Câu hỏi:

13/07/2024 903

Cho hình thoi ABCD có AB = 2 cm, \(\widehat A = \frac{1}{2}\widehat B\). Các điểm H, K thay đổi lần lượt trên cạnh AD, CD sao cho \(\widehat {HBK} = 60^\circ \).

Xác định vị trí của các điểm H, K để độ dài HK ngắn nhất. Tính độ dài ngắn nhất đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Xác định vị trí của các điểm H, K để độ dài HK ngắn nhất. Tính độ dài ngắn nhất đó (ảnh 1)

Do ABH = ∆DBK (câu a) nên BH = BK (hai cạnh tương ứng).

Tam giác BHK có BH = BK và \(\widehat {HBK} = 60^\circ \) nên tam giác BHK là tam giác đều.

Suy ra HK = BH = BK.

Do đó, độ dài HK ngắn nhất khi BHBK ngắn nhất.

Khi đó H, K lần lượt là hình chiếu của B trên AD, CD.

Xét ∆ABH vuông tại H và ∆DBH vuông tại H có:

AB = BD, cạnh BH chung

Do đó ∆ABH = ∆DBH (cạnh huyền – cạnh góc vuông).

Suy ra \(AH = DH = \frac{{AD}}{2} = \frac{2}{2} = 1{\rm{\;}}\left( {{\rm{cm}}} \right)\).

Áp dụng định lý Pythagore cho tam giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2

Suy ra BH2 = AB2 – AH2 = 22 – 12 = 4 – 1 = 3.

Do đó \(BH = \sqrt 3 {\rm{\;cm}}\).

Vậy độ dài ngắn nhất của HK là \(\sqrt 3 {\rm{\;cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thoi ABCD có góc B tù. Kẻ BE vuông góc AD tại E, BF vuông góc với CD tại F (ảnh 1)

Gọi O là giao điểm của AC và BD.

Do ABCD là hình thoi nên AC vuông góc với BD tại trung điểm O của BD.

Suy ra AC là đường trung trực của BD. Do đó BM = DM, BN = DN.

Do ABCD là hình thoi nên BA = BC, \(\widehat {BAE} = \widehat {BCF}\).

Xét ∆ABE vuông tại E và ∆BCF vuông tại F có:

BA = BC, \(\widehat {BAE} = \widehat {BCF}\).

Do đó ∆ABE = ∆BCF  (cạnh huyền – góc nhọn).

Suy ra \(\widehat {ABE} = \widehat {CBF}\) (hai góc tương ứng)

\(\widehat {ABD} = \widehat {CBD}\) (do ABCD là hình thoi nên BD là đường phân giác của góc ABC) , suy ra \(\widehat {MBO} = \widehat {NBO}\).

Xét ∆MBO vuông tại O và ∆NBO vuông tại O có:

\(\widehat {MBO} = \widehat {NBO}\), cạnh BO chung

Do đó ∆MBO = ∆NBO  (cạnh góc vuông – góc nhọn kề).

Suy ra BM = BN (hai cạnh tương ứng)

Mà BM = DM và BN = DN, suy ra BM = DM = BN = DN.

Tứ giác BMDN có BM = DM = BN = DN nên BMDN là hình thoi.

Lời giải

Cho một hình thoi có độ dài hai đường chéo là 18/5 m và 27/10 m. Tính chu vi và diện tích (ảnh 1)

Xét hình thoi ABCD có \(AC = \frac{{18}}{5}{\rm{\;m}},BD = \frac{{27}}{{10}}{\rm{\;m}}\).

Gọi O là giao điểm của hai đường chéo AC và BD.

Do ABCD là hình thoi nên AC BD, O là trung điểm của AC và BD.

Do O là trung điểm của AC nên \(OA = OC = \frac{{AC}}{2} = \frac{{\frac{{18}}{5}}}{2} = \frac{9}{5}{\rm{\;}}\)(m);

O là trung điểm của BD nên \(OB = OD = \frac{{BD}}{2} = \frac{{\frac{{27}}{{10}}}}{2} = \frac{{27}}{{20}}{\rm{\;}}\)(m).

Áp dụng định lý Pythagore cho tam giác OAB vuông tại O, ta có:

AB2 = OA2 + OB2.

Suy ra \(A{B^2} = {\left( {\frac{9}{5}} \right)^2} + {\left( {\frac{{27}}{{20}}} \right)^2} = \frac{{81}}{{25}} + \frac{{729}}{{400}} = \frac{{81}}{{16}}\)

Do đó \(AB = \sqrt {\frac{{81}}{{16}}} = \frac{9}{4}\,\,\left( {\rm{m}} \right)\).

Chu vi của hình thoi ABCD là: \(4AB = 4.\frac{9}{4} = 9\left( m \right)\).

Diện tích của hình thoi ABCD là: \(\frac{1}{2}AC.BD = \frac{1}{2}.\frac{{18}}{5}.\frac{{27}}{{10}} = \frac{{243}}{{50}}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP