Câu hỏi:
12/07/2024 1,096Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi của tứ giác AHIK bằng
A. 7 cm.
B. 14 cm.
C. 24 cm.
D. 12 cm.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: BC2 = 102 = 100, AB2 + BC2 = 62 + 82 = 36 + 64 = 100
Suy ra BC2 = AB2 + BC2
Do đó, ∆ABC vuông tại A (định lý Pythagore đảo).
Trong ∆ABC có:
• H, I lần lượt là trung điểm của AB và BC nên HI là đường trung bình của ∆ABC;
Suy ra HI // AC và (tính chất đường trung bình trong tam giác)
Hay (cm).
• I, K lần lượt là trung điểm của BC và AC nên IK là đường trung bình của ∆ABC
Suy ra IK // AB và (tính chất đường trung bình trong tam giác)
Hay (cm).
Ta có ∆ABC vuông tại A nên AB ⊥ AC, mà HI // AC nên AB ⊥ HI
Lại có IK // AB nên HI ⊥ IK tại I
Tứ giác AHIK có: nên AHIK là hình chữ nhật.
Chu vi của tứ giác AHIK bằng: 2.(IH + IK) = 2.(4 + 3) = 14 (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.
a) Chứng minh rằng: AI = CK.
b) Gọi N là giao điểm của EF và AC. Chứng minh rằng:Câu 2:
Cho tam giác ABC, điểm I nằm trong tam giác. Lấy điểm D trên IA, qua D kẻ đường thẳng song song với AB, cắt IB tại E. Qua E kẻ đường thẳng song song với BC, cắt IC tại F. Chứng minh rằng: DF // AC.
Câu 3:
Cho góc xOy nhọn. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng:
Câu 4:
Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác D cắt AC tại N. Chứng minh MN // AD.
Câu 5:
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh DE // BC.
Câu 6:
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh MI = IK = KN.
Câu 7:
Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Độ dài x bằng
A. 4.
B. 6.
C. 12.
D. 14.
về câu hỏi!