Câu hỏi:

05/08/2023 127 Lưu

Cho hàm số y=x32x2+(1m)x+m(1), m là tham số thực. Số giá trị nguyên m đế đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1,x2,x3 thỏa mãn điều kiện x12+x22+x32<4 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn A.

Phương trình hoành độ giao điểm: x32x2+(1m)x+m=0

(x1)x2xm=0x=1 hoặc x2xm=0 (*)

Đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt, khác 1 .

Đặt g(x)=x2xm;x1=1;x2 và x3 là các nghiệm của (*). Ta có

x22+x32=x2+x322x2x3=1+2m

Yêu cầu bài toán Δ>0g(1)0x22+x32<31+4m>0m01+2m<314<m<1 và m0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Gọi N là trung điểm BC, kéo dài AN cắt CD tại I. Kéo dài IM cắt SD tại KK=SD(AMG).

Trong không gian Oxyz, cho mặt phẳng 2x - 2y - z + 9 = 0 và mặt cầu . Tọa độ điểm M nằm trên mặt cầu (S) sao cho khoảng cách từ điểm M đến mặt phẳng (P) đạt giá trị lớn nhất là (ảnh 1)
Do N là trung điêm BC và IC // AB nên IC = AB = CD. Áp dụng định lí Menelaus cho tam giác SCD ta có KSKD.MCMS.IDIC=1KSKD.11.21=1KSKD=12.

Lời giải

Đáp án: 1

Với c(t)=tt2+1,t>0 ta có c'(t)=t2+1t2+12. Cho c'(t)=0t2+1t2+12=0t=1.

Bảng biến thiên

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể (ảnh 1)

Vậy max(0;+)(t)=12 khi t = 1.

Cách khác:

Với t > 0, ta có t2+12t. Dấu "=" xảy ra t=1.

Do đó, c(t)=tt2+1t2t=12. Vậy max(0;+)c(t)=12 khi t = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP