Câu hỏi:

05/08/2023 1,746

Đọc đoạn trích sau đây và trả lời câu hỏi:

                                                  Đâu gió cồn thơm đất nhỏ mùi

                                                  Đâu ruồng trẻ mát thở yên vui

                                                  Đâu từng ô mạ xanh mơn mỏn

                                                  Đâu những nương khoai ngọt sắn bùi?

                                                                (Nhớ đồng – Tố Hữu)

Giọng điệu chủ đạo của toàn bộ đoạn trích là gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn A.
Bài thơ được sáng tác trong hoàn cảnh nhà thơ bị giam ở nhà lao Thừa Phủ. Trong hoàn cảnh bị giam cầm, ông nhớ tới cảnh vật thiên nhiên gần gũi bên ngoài nhà lao. Điệp từ “đâu” như lời phủ định, có nghĩa là “đâu có” như nhấn mạnh nỗi nhớ của nhà thơ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Gọi N là trung điểm BC, kéo dài AN cắt CD tại I. Kéo dài IM cắt SD tại KK=SD(AMG).

Trong không gian Oxyz, cho mặt phẳng 2x - 2y - z + 9 = 0 và mặt cầu . Tọa độ điểm M nằm trên mặt cầu (S) sao cho khoảng cách từ điểm M đến mặt phẳng (P) đạt giá trị lớn nhất là (ảnh 1)
Do N là trung điêm BC và IC // AB nên IC = AB = CD. Áp dụng định lí Menelaus cho tam giác SCD ta có KSKD.MCMS.IDIC=1KSKD.11.21=1KSKD=12.

Lời giải

Đáp án: 1

Với c(t)=tt2+1,t>0 ta có c'(t)=t2+1t2+12. Cho c'(t)=0t2+1t2+12=0t=1.

Bảng biến thiên

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể (ảnh 1)

Vậy max(0;+)(t)=12 khi t = 1.

Cách khác:

Với t > 0, ta có t2+12t. Dấu "=" xảy ra t=1.

Do đó, c(t)=tt2+1t2t=12. Vậy max(0;+)c(t)=12 khi t = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay