Câu hỏi:

11/07/2024 5,679

Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Đáp án: 7440

Vì chữ số 2 đứng liền giữa hai chữ số 1 và 3 nên số cần lập có bộ ba số 123 hoặc 321.

Trường hợp 1: Số cần lập có bộ ba số 123 .

Nếu bộ ba số 123 đứng đầu thì số có dạng 123abcd¯.

A74=840 cách chọn bốn số a, b, c, d nên có A74=840 số.

Nếu bộ ba số 123 không đứng đầu thì số có 4 vị trí đặt bộ ba số 123 .

Có 6 cách chọn số đứng đầu và có A63=120 cách chọn ba số b, c, d .

Theo quy tắc nhân có 6.4.A63=2880 số

Theo quy tắc cộng có 840+2880=3720 số.

Trường hợp 2: Số cần lập có bộ ba số 321 .

Do vai trò của bộ ba số 123 và 321 như nhau nên có 2(840+2880)=7440.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.
[b,c]=(5;m+1;32m). Ta có: a=[b,c]m+1=332m=1m=2.

Lời giải

Đáp án: 1

Đặt u=x2dv=exdxdu=dxv=ex01(x2)exdx=(x2)ex0101exdx=e+2ex01=32e

Với a;ba=3,b=2a+b=1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP