Câu hỏi:

19/08/2025 586 Lưu

Chứng minh \(\frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge ab + bc + ca\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng bất đẳng thức AM – GM ta có:

\(\frac{{{a^3}}}{b} + ab \ge 2{{\rm{a}}^2}\)

\(\frac{{{b^3}}}{c} + bc \ge 2{b^2}\)

\(\frac{{{c^3}}}{a} + ac \ge 2{c^2}\)

Suy ra \(\frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} + ab + bc + ac \ge 2{{\rm{a}}^2} + 2{b^2} + 2{c^2}\)

\( \Leftrightarrow \frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge 2\left( {{{\rm{a}}^2} + {b^2} + {c^2}} \right) - \left( {ab + bc + ac} \right)\)

Theo hệ quả của bất đẳng thức AM – GM thì a2 + b2 + c2 ≥ ab + bc + ac

Do đó \(\frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge ab + bc + ca\)

Vậy \(\frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge ab + bc + ca\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có:

1 + 1 = 3 2 = 3

Giả sử ta có đẳng thức:

14 + 6 – 20 = 21 + 9 – 30

Đặt thừa số chung ta có

2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)

Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau

Do đó 2 = 3

Phản biện:

+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.

+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.

Ta có: 1 + 1 = 2 + 1

Mà (1 + 1) × 0 = (2 + 1 ) × 0

Vậy 1 + 1 = 3.

Lời giải

Ta có:

P = (x – 1)(x + 2)(x + 3)(x + 6)

P = [(x – 1)(x + 6)][(x + 2)(x + 3)]

P = (x2 + 5x – 6)(x2 + 5x + 6)

P = (x2 + 5x)2 – 62

P = (x2 + 5x)2 – 36

Vì (x2 + 5x)2 ≥ 0 với mọi x

Nên (x2 + 5x)2 – 36 ≥ –36 với mọi x

Hay P ≥ –36 với mọi x

Suy ra P đạt giá trị nhỏ nhất bằng –36 khi x2 + 5x = 0 \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 5\end{array} \right.\)

Vậy P đạt giá trị nhỏ nhất P = –36 khi x = 0 hoặc x = –5.

Câu 3

A. \(y = {\left( {2 + \sqrt x } \right)^\pi }\)

B. \(y = {\left( {2 + \frac{1}{{{x^2}}}} \right)^\pi }\)

C. \(y = {\left( {2 + {x^2}} \right)^\pi }\)

D\(y = {\left( {2 + x} \right)^\pi }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. y = sinx . cos2x

B. \(y = {\sin ^3}x.cos\left( {x - \frac{\pi }{2}} \right)\)

C. \(y = \frac{{\tan x}}{{{{\tan }^2} + 1}}\)

D. y = cosx . sin3x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP