Câu hỏi:

16/08/2023 357

Phân tích tử và mẫu thành nhân tử rồi rút gọn phân thức:

a) \(\frac{{3{{\rm{x}}^2} - 12{\rm{x}} + 12}}{{{x^4} - 8{\rm{x}}}}\);

b) \(\frac{{7{{\rm{x}}^2} + 14{\rm{x}} + 7}}{{3{{\rm{x}}^2} + 3{\rm{x}}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\frac{{3{{\rm{x}}^2} - 12{\rm{x}} + 12}}{{{x^4} - 8{\rm{x}}}}\)

+ Phân tích tử số và mẫu số thành nhân tử:

3x2 – 12x + 12 = 3(x2 – 4x + 4)

= 3(x2 – 2 . x . 2 + 2) (Hằng đẳng thức (2))

= 3(x – 2)2

x4 – 8x = x(x3 – 8) = x(x3 – 23) (Hằng đẳng thức (7))

= x.(x – 2)(x2 + 2x + 22)

= x(x – 2)(x2 + 2x + 4)

+ Rút gọn phân thức:

\(\frac{{3{x^2} - 12x + 12}}{{{x^4} - 8x}}{\rm{ }} = \frac{{3 \cdot {{(x - 2)}^2}}}{{x \cdot (x - 2)\left( {{x^2} + 2x + 4} \right)}} = \frac{{3 \cdot (x - 2)}}{{x\left( {{x^2} + 2x + 4} \right)}}\)

b) \(\frac{{7{{\rm{x}}^2} + 14{\rm{x}} + 7}}{{3{{\rm{x}}^2} + 3{\rm{x}}}}\)

+ Phân tích tử và mẫu thành nhân tử:

7x2 + 14x + 7 = 7(x2 + 2x + 1) = 7(x + 1)2

3x2 + 3x = 3x(x + 1)

+ Rút gọn phân thức

\(\frac{{7{x^2} + 14x + 7}}{{3{x^2} + 3x}} = \frac{{7 \cdot {{(x + 1)}^2}}}{{3x \cdot (x + 1)}} = \frac{{7(x + 1)}}{{3x}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hãy chứng minh 1 + 1 = 3.

Lời giải

Ta có:

1 + 1 = 3 2 = 3

Giả sử ta có đẳng thức:

14 + 6 – 20 = 21 + 9 – 30

Đặt thừa số chung ta có

2 × (7 + 3 – 10) = 3 × (7 + 3 – 10)

Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau

Do đó 2 = 3

Phản biện:

+) Sự thật 2 không thể bằng 3. Bài toán này sai trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng.

+) Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a × 0 = b × 0 với bất kì giá trị nào của a và b.

Ta có: 1 + 1 = 2 + 1

Mà (1 + 1) × 0 = (2 + 1 ) × 0

Vậy 1 + 1 = 3.

Câu 2

Trong các hàm số sau đây, hàm số nào có tập xác định D = R ?

Lời giải

Đáp án đúng là: C

Hàm số \(y = {\left( {2 + \sqrt x } \right)^\pi }\) có tập xác định là

D = [0; +∞)

Hàm số \(y = {\left( {2 + \frac{1}{{{x^2}}}} \right)^\pi }\) có tập xác định là

D = R \ {0}

Hàm số \(y = {\left( {2 + {x^2}} \right)^\pi }\) có tập xác định là

D = R

Hàm số \(y = {\left( {2 + x} \right)^\pi }\) có tập xác định là

D = (–2; +∞)

Vậy ta chọn đáp án C.

Câu 4

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục trung?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay