Câu hỏi:
12/07/2024 1,305
Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số f(x) = |e2x − 4ex + m| trên đoạn [0; ln 4] bằng 6?
Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số f(x) = |e2x − 4ex + m| trên đoạn [0; ln 4] bằng 6?
Quảng cáo
Trả lời:
Ta đặt t = ex, với x Î [0; ln 4] Þ t Î [1; 4]
Khi đó, hàm số trở thành: g (t) = |t2 − 4t + m|.
Xét hàm số u (t) = t2 − 4t + m trên [1; 4], có u′ (t) = 2t − 4 = 0 Û t = 2.
Ta tính được u (1) = m − 3; u (2) = m − 4; u (4) = m suy ra
g (1) = |m − 3|; g (2) = |m − 4|; g (4) = |m|
• TH1: \[\left\{ \begin{array}{l}\left| {m - 4} \right| \le \left\{ {\left| {m - 3} \right|;\;\left| m \right|} \right\}\\\mathop {\min }\limits_{\left[ {1;\;4} \right]} g\left( t \right) = \left| {m - 4} \right| = 6\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 4} \right| \le \left\{ {\left| {m - 3} \right|;\;\left| m \right|} \right\}\\\left[ \begin{array}{l}m - 4 = 6\\m - 4 = - 6\end{array} \right.\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 4} \right| \le \left\{ {\left| {m - 3} \right|;\;\left| m \right|} \right\}\\\left[ \begin{array}{l}m = 10\\m = - 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 10\].
• TH2:\[\left\{ \begin{array}{l}\left| {m - 3} \right| \le \left\{ {\left| {m - 4} \right|;\;\left| m \right|} \right\}\\\mathop {\min }\limits_{\left[ {1;\;4} \right]} g\left( t \right) = \left| {m - 3} \right| = 6\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 3} \right| \le \left\{ {\left| {m - 4} \right|;\;\left| m \right|} \right\}\\\left[ \begin{array}{l}m - 3 = 6\\m - 3 = - 6\end{array} \right.\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 3} \right| \le \left\{ {\left| {m - 4} \right|;\;\left| m \right|} \right\}\\\left[ \begin{array}{l}m = 9\\m = - 3\end{array} \right.\end{array} \right.\]
Suy ra trường hợp trên không cho giá trị m thảo mãn.
• TH3: \[\left\{ \begin{array}{l}\left| m \right| \le \left\{ {\left| {m - 3} \right|;\;\left| {m - 4} \right|} \right\}\\\mathop {\min }\limits_{\left[ {1;\;4} \right]} g\left( t \right) = \left| m \right| = 6\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| m \right| \le \left\{ {\left| {m - 3} \right|;\;\left| {m - 4} \right|} \right\}\\\left[ \begin{array}{l}m = 6\\m = - 6\end{array} \right.\end{array} \right.\]
Û m = −6.
Vậy m Î {−6; 10} là hai giá trị cần tìm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi H là trung điểm của AB suy ra SH ⏊ AB .
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH ⏊ (ABCD)
Gọi O = AC Ç BD.
Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)
Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)
\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)
Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).
Kẻ HM ⏊ BD (M Î BD), kẻ HK ⏊ SM tại K
Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)
\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).
Lại có HK ⏊ SM Þ HK ⏊ (SBD) tại K Þ HK = d(H, (SBD)).
Vì ABCD là hình vuông nên AO ⏊ BD mà HM ⏊ BD Þ HM // AO.
Lại có H là trung điểm của AB nên M là trung điểm của BO.
Suy ra HM là đường trung bình của tam giác ABO
\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).
Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên
\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)
\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).
Lời giải
Ta có: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2\left( {1 - 3x} \right)}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2 - 6x}}\)
Logarit cơ số 2 hai vế ta được: \({\log _2}{2^{{x^2} - x + 8}} = {\log _2}{2^{2 - 6x}}\)
Þ x2 − x + 8 = 2 − 6x
Û x2 + 5x + 6 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 2\end{array} \right.\)
Vậy nghiệm của phương trình là x = −2 và x = −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.