Câu hỏi:

16/08/2023 214

Cho hình chóp S ABCD, có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách từ A đến (SCD).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S ABCD, có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB (ảnh 1)

Gọi H và M lần lượt là trung điểm của AB và CD.

Tam giác SAB đều nên suy ra SH AB.

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH (ABCD).

Kẻ HM BD (M Î BD), kẻ HK SM tại K.

Ta có: \[\left\{ \begin{array}{l}CD \bot HM\\CD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\]

\[ \Rightarrow CD \bot \left( {SHM} \right) \Rightarrow \left( {SCD} \right) \bot \left( {SHM} \right)\].

Kẻ HN SM Þ HN (SCD)

Do đó d(A, (SCD)) = d(H, (SCD)) = HN.

Xét tam giác SMH vuông tại H, ta có \(HM = 1;\;SH = \frac{{\sqrt 3 }}{2}\) nên

\(\frac{1}{{H{N^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{M^2}}} = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{1^2}}} = \frac{7}{3}\)

\( \Rightarrow HN = \sqrt {\frac{3}{7}} = \frac{{\sqrt {21} }}{7} \Rightarrow d\left( {A,\;\left( {SCD} \right)} \right) = d\left( {H,\;\left( {SCD} \right)} \right) = \frac{{\sqrt {21} }}{7}\).

Vậy khoảng cách từ A đến mặt phẳng (SCD) bằng \(\frac{{\sqrt {21} }}{7}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Xem đáp án » 12/07/2024 13,956

Câu 2:

Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).

Xem đáp án » 12/07/2024 7,003

Câu 3:

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có ba đường tiệm cận?

Xem đáp án » 12/07/2024 6,318

Câu 4:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Xem đáp án » 12/07/2024 5,096

Câu 5:

Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.

Xem đáp án » 12/07/2024 4,123

Câu 6:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem đáp án » 12/07/2024 3,896

Câu 7:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem đáp án » 12/07/2024 3,488