Câu hỏi:

16/08/2023 264

Có bao nhiêu giá trị m nguyên thuộc khoảng (−10; 10) để đồ thị hàm số \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}}\) có đúng ba đường tiệm cận?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: \(\left\{ \begin{array}{l}x\left( {x - m} \right) \ge 0\\x \ne - 2\end{array} \right.\)

Ta có:

\[\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 - \frac{m}{x}} - \frac{1}{x}}}{{1 + \frac{2}{x}}} = 1\];

\[\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 - \frac{m}{x}} + \frac{1}{x}}}{{ - 1 - \frac{2}{x}}} = - 1\].

Suy ra đồ thị hàm số có 2 đường tiệm cận ngang y = ±1.

Do đó bài toán thỏa mãn khi đồ thị hàm số chỉ có duy nhất một tiệm cận đứng.

Ta lại có: \(y = \frac{{\sqrt {x\left( {x - m} \right)} - 1}}{{x + 2}} = \frac{{{x^2} - mx - 1}}{{\left( {x + 2} \right)\left( {\sqrt {x\left( {x - m} \right)} + 1} \right)}}\)

Để đồ thị hàm số chỉ có duy nhất một đường TCĐ thì x = −2 không là nghiệm của tử và x = −2 thuộc tập xác định của hàm số.

\( \Leftrightarrow \left\{ \begin{array}{l} - 2\left( { - 2 - m} \right) \ge 0\\{\left( { - 2} \right)^2} - m\,.\,\left( { - 2} \right) - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\2m + 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\m \ne - \frac{3}{2}\end{array} \right.\)

Mặt khác, m Î (−10; 10), m Î ℤ nên m Î {−2; −1; 0; 1; 2; …; 8; 9}.

Vậy có tất cả 12 giá trị nguyên của tham số m thỏa mãn bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Xem đáp án » 12/07/2024 9,163

Câu 2:

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có ba đường tiệm cận?

Xem đáp án » 12/07/2024 5,891

Câu 3:

Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).

Xem đáp án » 12/07/2024 5,564

Câu 4:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Xem đáp án » 12/07/2024 4,966

Câu 5:

Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.

Xem đáp án » 12/07/2024 4,022

Câu 6:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem đáp án » 12/07/2024 3,348

Câu 7:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem đáp án » 12/07/2024 3,176

Bình luận


Bình luận