Câu hỏi:
11/07/2024 1,897Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Gọi chiều dài, chiều rộng và chiều cao của bể cá lần lượt là a, b, c (a, b, c > 0).
Theo đề bài ta có a = 2b
Vì ông A dự định sử dụng hết 5m2 kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là: ab + 2bc + 2ac
Hay ab + 2bc + 2ac = 5.
Mà a = 2b nên 2b2 + 2bc + 4bc = 5
Û 2b2 + 6bc = 5
\( \Rightarrow c = \frac{{5 - 2{b^2}}}{{6b}}\).
Xét điều kiện c > 0 \( \Rightarrow \frac{{5 - 2{b^2}}}{{6b}} > 0 \Rightarrow 5 - 2{b^2} > 0\)
\( \Rightarrow 0 < b < \sqrt {\frac{5}{2}} \).
Thể tích bể cá là:
\(V = abc = 2b\,.\,b\,.\,\frac{{5 - 2{b^2}}}{{6b}} = \frac{{ - 2{b^3} + 5b}}{3}\).
Xét hàm số \(f\left( b \right) = \frac{{ - 2{b^3} + 5b}}{3}\;\left( {b > 0} \right)\)
\( \Rightarrow f'\left( b \right) = \frac{{ - 6{b^2} + 5}}{3} = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}b = - \sqrt {\frac{5}{6}} \;\left( {KTM} \right)\\b = \sqrt {\frac{5}{6}} \;\;\;\left( {TM} \right)\end{array} \right.\)
Xét bảng biến thiên:
Yêu cầu bài toán suy ra \(\max f\left( b \right) = \frac{{5\sqrt {30} }}{{27}} \Leftrightarrow b = \sqrt {\frac{5}{6}} \).
Vậy bể cá có thể tích lớn nhất bằng \[\frac{{5\sqrt {30} }}{{27}} \approx 1,01\;\left( {{m^3}} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).
Câu 2:
Câu 3:
Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).
Câu 5:
Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.
Câu 6:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.
Câu 7:
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
về câu hỏi!