Câu hỏi:

12/07/2024 279

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Khoảng cách từ C đến mặt phẳng (SBD) bằng

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 2)

Gọi H là trung điểm của AB suy ra SH AB

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH (ABCD)

Gọi O = AC Ç BD

Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)

Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)

\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)

Vậy \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\)

Kẻ HM BD (M Î BD), kẻ HK SM tại K

Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\)

Lại có HK SM Þ HK (SBD) tại K Þ HK = d(H, (SBD))

Vì ABCD là hình vuông nên AO BD mà HM BD Þ HM // AO

Lại có H là trung điểm của AB nên M là trung điểm của BO

Suy ra HM là đường trung bình của tam giác ABO

\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)

Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên

\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)

\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\)

Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 1)

Xem đáp án » 12/07/2024 7,385

Câu 2:

Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có ba đường tiệm cận?

Xem đáp án » 12/07/2024 5,357

Câu 3:

Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).

Xem đáp án » 12/07/2024 4,784

Câu 4:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Xem đáp án » 12/07/2024 4,715

Câu 5:

Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.

Xem đáp án » 12/07/2024 3,841

Câu 6:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem đáp án » 12/07/2024 3,172

Câu 7:

Cho hàm số f (x) = ax4 + bx2 + c (a, b, c Î ℝ). Đồ thị của hàm số y = f (x) như hình vẽ bên. Số nghiệm thực của phương trình 4f (x) − 3 = 0 là:

Cho hàm số f (x) = ax^4 + bx^2 + c (a, b, c thuộc R). Đồ thị của hàm số y = f (x) như hình  (ảnh 1)

Xem đáp án » 12/07/2024 2,399

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store