Câu hỏi:

13/07/2024 4,874

Cho tam giác ABC cân tại A  A^<90°, các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC lần lượt tại M và P. Tia phân giác của góc ACE cắt DB và AB lần lượt tại Q và N. Chứng minh rằng:

a) ABD^=ACE^;

b) BH = CH;

c) Tam giác BOC vuông cân;

d) MNPQ là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ)  các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC lần lượt tại M và P. Tia phân giác của góc ACE cắt DB và AB lần lượt tại Q và N. Chứng minh rằng: a)  ; b) BH = CH; c) Tam giác BOC vuông cân; d) MNPQ là hình vuông. (ảnh 1)

Cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ)  các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC lần lượt tại M và P. Tia phân giác của góc ACE cắt DB và AB lần lượt tại Q và N. Chứng minh rằng: a)  ; b) BH = CH; c) Tam giác BOC vuông cân; d) MNPQ là hình vuông. (ảnh 2)
Media VietJack
Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành. c) EM cắt BD tại K. Chứng minh EK = 2KM. (ảnh 1)

a) Xét tứ giác ABDC có: AM = MD (M ∈ AD); BM = MC (M ∈ BC).

Suy ra tứ giác ABDC là hình bình hành.

Ta lại có BAC^=90° (do ∆ABC vuông tại A).

Do đó, tứ giác ABDC là hình chữ nhật.

b) Tứ giác ABDC là hình chữ nhật (theo câu a), suy ra AB = CD và AB // CD.

Do E đối xứng với A qua B nên B, A, E thẳng hàng và AB = BE.

Vì AB // CD nên BE // CD.

Vì AB = CD và AB = BE nên CD = BE.

Xét tứ giác BEDC có BE // CD và BE = CD nên là hình bình hành.

c) ∆AED có hai đường trung tuyến EM và DB cắt nhau tại K, nên K là trọng tâm của tam giác AED.

Suy ra EK=23EM và KM=13EM nên EK = 2KM.

Lời giải

Cho tam giác DEF vuông tại D (DE > DF), DM là đường trung tuyến (M ∈ EF). Gọi MN là đường vuông góc kẻ từ M đến DE (N ∈ DE), MK là đường vuông góc kẻ từ M đến DF (K ∈ DF), H là điểm đối xứng với M qua N. a) Tứ giác DKMN là hình gì Vì sao? b) Gọi O là trung điểm của DM. Chứng minh ba điểm H, O , F thẳng hàng. c) Tam giác DEF cần thêm điều kiện gì để tứ giác DKMN là hình vuông? (ảnh 1)

a) Do MN DE tại N, MK DF tại K nên MND^=90° MKD^=90°

Tứ giác DKMNKDN^=90°; MKD^=90°; MND^=90° nên DKMN là hình chữ nhật.

b) ∆DEF vuông tại DDM là đường trung tuyến ứng với cạnh huyền nên

MD=12EF=ME.

Suy ra ∆MDE cân tại M.

Ta lại có MN DE tại N, suy ra đường cao MN cũng đồng thời là đường trung tuyến của MDE, suy ra ND=NE=DE2.

Tứ giác DHEM có: ND = NE và NH = NM (do H là điểm đối xứng với M qua N).

Suy ra DHEM là hình bình hành.

Do đó DH // MEDH = ME.

M là trung điểm EF nên ME = MF

Khi đó DH // MFDH = MF nên tứ giác DHMF là hình bình hành.

Hơn nữa, O là trung điểm của DM, suy ra O cũng là trung điểm của HF.

Vậy H, O, F thẳng hàng.

c) Hình chữ nhật DKMN là hình vuông khi DM là đường phân giác của KDN^, hay DM là đường phân giác của .

Khi đó DM là đường trung tuyến và cũng là đường phân giác xuất phát từ D của ∆DEF

Do đó ∆DEF cân tại D

Suy ra ∆DEF vuông cân tại D.

Vậy ∆DEF vuông cân tại D thì DKMN là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay