Giải SBT Toán 8 CTST Bài 5. Hình chữ nhật – Hình vuông có đáp án
33 người thi tuần này 4.6 557 lượt thi 7 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Xét tứ giác ABDC có: AM = MD (M ∈ AD); BM = MC (M ∈ BC).
Suy ra tứ giác ABDC là hình bình hành.
Ta lại có (do ∆ABC vuông tại A).
Do đó, tứ giác ABDC là hình chữ nhật.
b) Tứ giác ABDC là hình chữ nhật (theo câu a), suy ra AB = CD và AB // CD.
Do E đối xứng với A qua B nên B, A, E thẳng hàng và AB = BE.
Vì AB // CD nên BE // CD.
Vì AB = CD và AB = BE nên CD = BE.
Xét tứ giác BEDC có BE // CD và BE = CD nên là hình bình hành.
c) ∆AED có hai đường trung tuyến EM và DB cắt nhau tại K, nên K là trọng tâm của tam giác AED.
Suy ra và nên EK = 2KM.
Lời giải

a) Do MN ⊥ DE tại N, MK ⊥ DF tại K nên và
Tứ giác DKMN có nên DKMN là hình chữ nhật.
b) ∆DEF vuông tại D và DM là đường trung tuyến ứng với cạnh huyền nên
.
Suy ra ∆MDE cân tại M.
Ta lại có MN ⊥ DE tại N, suy ra đường cao MN cũng đồng thời là đường trung tuyến của ∆MDE, suy ra .
Tứ giác DHEM có: ND = NE và NH = NM (do H là điểm đối xứng với M qua N).
Suy ra DHEM là hình bình hành.
Do đó DH // ME và DH = ME.
Mà M là trung điểm EF nên ME = MF
Khi đó DH // MF và DH = MF nên tứ giác DHMF là hình bình hành.
Hơn nữa, O là trung điểm của DM, suy ra O cũng là trung điểm của HF.
Vậy H, O, F thẳng hàng.
c) Hình chữ nhật DKMN là hình vuông khi DM là đường phân giác của , hay DM là đường phân giác của .
Khi đó DM là đường trung tuyến và cũng là đường phân giác xuất phát từ D của ∆DEF
Do đó ∆DEF cân tại D
Suy ra ∆DEF vuông cân tại D.
Vậy ∆DEF vuông cân tại D thì DKMN là hình vuông.
Lời giải

a) ∆ABC có E là trung điểm của AB, M là trung điểm của BC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có và ME // AB
Do đó (cm).
b) Tứ giác ABDE có: AB // DE (do AB // ME) và BD // AE (do Bx // AC ).
Suy ra ABDE là hình bình hành.
Hình bình hành ABDE có (do ∆ABC vuông tại A) nên ABDE là hình chữ nhật.
Ta lại có (do E là trung điểm của AC), suy ra (cm).
Khi đó AB = AE = 4 (cm).
Hình chữ nhật ABDE có AB = AE nên ABDE là hình vuông.
c) Hình vuông ABDE có AD cắt BE tại I, suy ra I là trung điểm của AD và BE.
Xét ∆ADC có I là trung điểm AD, E là trung điểm AC
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: IE // CD và .
Tứ giác BDCE có: BE // CD (vì IE // CD); BD // EC (vì Bx // AC).
Suy ra BDCE là hình bình hành.
Do đó, hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm của BC, suy ra M cũng là trung điểm của DE.
∆ADE có đường trung tuyến AM và EI cắt nhau tại K nên K là trọng tâm của ∆ADE.
Suy ra .
Vậy DC = 6KI.
Lời giải

a) Xét các tam giác HAE, EBF, FCG, GDH có:
AE = BF = CG = DH = a, BE = CF = DG = AH = b (giả thiết);
(do ABCD là hình vuông)
Suy ra ∆HAE = ∆EBF = ∆FCG = ∆GDH (c.g.c) nên HE = EF = FG = GH
Do đó EFGH là hình thoi.
Ta lại có nên
Hình thoi EFGH có nên EFGH là hình vuông.
b) Ta có SABCD = AB2 = (a + b)2 (1)
nên . (2)
Từ (1) và (2) suy ra SEFGH = (a + b)2 ‒ 2ab = a2 + 2ab + b2 – 2ab = a2 + b2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.