Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
Quảng cáo
Trả lời:

a) Trong mặt phẳng (BCD), vẽ đường thẳng qua O và song song với BD cắt các cạnh BC, CD lần lượt tại E, F.
Khi đó EF là giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hai đường thẳng d, d' cắt ba mặt phẳng (P), (Q), (R) đôi một song song lần lượt tại A, B, C và A', B', C'. Do đó, áp dụng định lí Thales, ta có: .
Suy ra .
Vậy B'C' = 9 cm.
Lời giải

Ta có (ABCD) ∩ (EFGH) = EF; (A'B'C'D') ∩ (EFGH) = HG.
Vì hai mặt (ABCD) và (A'B'C'D) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF // HG.
Tương tự có EH // FG nên tứ giác EFGH là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.