Câu hỏi:
11/07/2024 1,015Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình thang. Chứng minh rằng đáy A'B'C'D' là hình thang.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Giả sử hình thang ABCD có AB // CD.
Ta có các mặt ABB'A' và CDD'C' của hình lăng trụ ABCD.A'B'C'D' là hình bình hành nên AB // A'B' và CD // C'D'.
Vì vậy ta có A'B' // C'D', tức là tứ giác A'B'C'D' là hình thang.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ba mặt phẳng (P), (Q), (R) đôi một song song. Hai đường thẳng d, d' cắt ba mặt phẳng lần lượt tại A, B, C và A', B', C'. Biết rằng AB = 2 cm, BC = 6 cm và A'B' = 3 cm, tính B'C'.
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).
a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.
Câu 3:
Cho hình hộp ABCD.A'B'C'D'. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA', BB', CC', DD' lần lượt tại M, N, P, Q.
a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA', BB', CC', DD'.
Câu 4:
Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.
Câu 5:
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
về câu hỏi!