Câu hỏi:
12/07/2024 1,142Cho hình hộp ABCD.A'B'C'D'. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA', BB', CC', DD' lần lượt tại M, N, P, Q.
a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA', BB', CC', DD'.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Áp dụng định lí Thales cho ba mặt phẳng (ABCD), (MNPQ), (A'B'C'D') đôi một song song với nhau và hai cát tuyến AA' và DB', suy ra .
Vì O là giao điểm của các đường chéo của hình hộp nên O là trung điểm của DB', từ đó suy ra M là trung điểm của AA'.
Chứng minh tương tự với các điểm N, P, Q ta được N, P, Q lần lượt là trung điểm của các cạnh BB', CC', DD'.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ba mặt phẳng (P), (Q), (R) đôi một song song. Hai đường thẳng d, d' cắt ba mặt phẳng lần lượt tại A, B, C và A', B', C'. Biết rằng AB = 2 cm, BC = 6 cm và A'B' = 3 cm, tính B'C'.
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).
a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.
Câu 3:
Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình thang. Chứng minh rằng đáy A'B'C'D' là hình thang.
Câu 4:
Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.
Câu 5:
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
về câu hỏi!