Câu hỏi:
13/07/2024 1,845
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).
a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).
a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.
Quảng cáo
Trả lời:

a) Trong mặt phẳng (SAB), vẽ EF // AB (F ∈ SB).
Trong mặt phẳng (SBC), vẽ FG // BC (G ∈ SC).
Trong mặt phẳng (SCD), vẽ GH // CD (H ∈ SD).
Khi đó, các giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp là các đường thẳng EF, FG, GH, HE.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hai đường thẳng d, d' cắt ba mặt phẳng (P), (Q), (R) đôi một song song lần lượt tại A, B, C và A', B', C'. Do đó, áp dụng định lí Thales, ta có: .
Suy ra .
Vậy B'C' = 9 cm.
Lời giải

Giả sử hình thang ABCD có AB // CD.
Ta có các mặt ABB'A' và CDD'C' của hình lăng trụ ABCD.A'B'C'D' là hình bình hành nên AB // A'B' và CD // C'D'.
Vì vậy ta có A'B' // C'D', tức là tứ giác A'B'C'D' là hình thang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.