Câu hỏi:

13/07/2024 2,120 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).

a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua  (ảnh 1)

a) Trong mặt phẳng (SAB), vẽ EF // AB (F SB).

Trong mặt phẳng (SBC), vẽ FG // BC (G SC).

Trong mặt phẳng (SCD), vẽ GH // CD (H SD).

Khi đó, các giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp là các đường thẳng EF, FG, GH, HE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai đường thẳng d, d' cắt ba mặt phẳng (P), (Q), (R) đôi một song song lần lượt tại A, B, C và A', B', C'. Do đó, áp dụng định lí Thales, ta có: ABA'B'=BCB'C'=ACA'C'.

Suy ra B'C'=A'B'.BCAB=3.62=9.

Vậy B'C' = 9 cm.

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng (P) cắt các cạnh AD, BC, B'C', A'D' lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành. (ảnh 1)

Ta có (ABCD) ∩ (EFGH) = EF; (A'B'C'D') ∩ (EFGH) = HG.

Vì hai mặt (ABCD) và (A'B'C'D) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF // HG.

Tương tự có EH // FG nên tứ giác EFGH là hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP