Câu hỏi:

13/07/2024 527

Ta định nghĩa các hàm sin hyperbolic và hàm côsin hyperbolic như sau:

sinhx =12exex;coshx=12ex+ex.

Chứng minh rằng:

a) sinh x là hàm số lẻ;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Hàm số fx = sinhx =12exex  có tập xác định D = ℝ.

Ta có: x D – x D.

fx=12exex=12exex=fx , x ℝ.

Do đó, sinh x là hàm số lẻ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập xác định của các hàm số sau: b) y=log12x1 .

Xem đáp án » 13/07/2024 2,895

Câu 2:

Số tiền ban đầu 120 triệu đồng được gửi tiết kiệm với lãi suất năm không đổi là 6%. Tính số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép:

a) hằng quý;

Xem đáp án » 12/07/2024 1,473

Câu 3:

Trong Vật lí, mức cường độ âm (tính bằng deciben, kí hiệu là dB) được tính bởi công thức L=10logII0 , trong đó I là cường độ âm tính theo W/m2 và I0 = 10−12 W/m2 là cường độ âm chuẩn, tức là cường độ âm thấp nhất mà tai người có thể nghe được.

a) Tính mức cường độ âm của một cuộc trò chuyện bình thường có cường độ âm là 10−7 W/m2 .

Xem đáp án » 13/07/2024 1,348

Câu 4:

Vẽ đồ thị của các hàm số mũ sau:

a) y=3x ;

Xem đáp án » 13/07/2024 1,332

Câu 5:

b) Khi cường độ âm tăng lên 1 000 lần thì mức cường độ âm (đại lượng đặc trưng cho độ to nhỏ của âm) thay đổi thế nào?

Xem đáp án » 12/07/2024 1,191

Câu 6:

Vẽ đồ thị của các hàm số lôgarit sau: b) y=log23x .

Xem đáp án » 12/07/2024 870

Câu 7:

Cho hàm số lôgarit f(x) = loga x (0 < a ≠ 1). Chứng minh rằng:

a) f1x=fx ;

Xem đáp án » 13/07/2024 814

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store