Câu hỏi:
13/07/2024 6,462
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) un = 3n + 1;
b) un = 4 ‒ 5n;
c)
d)
e)
g) un = n2 + 1.
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) un = 3n + 1;
b) un = 4 ‒ 5n;
c)
d)
e)
g) un = n2 + 1.
Câu hỏi trong đề: Giải SBT Toán 11 CTST Bài 2. Cấp số cộng có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: u1 = 3.1 + 1 = 4; un = 3n + 1; và un+1 = 3(n + 1) + 1 = 3n + 4.
Do đó un+1 – un = 3n + 4 – (3n + 1) = 3.
Vậy un = 3n + 1 là cấp số cộng với số hạng đầu u1 = 4 và công sai d = 3.
b) Ta có: u1 = 4 ‒ 5.1 = ‒1; un = 4 ‒ 5n và un+1 = 4 – 5(n + 1) = −1 – 5n.
Do đó un+1 – un = −1 – 5n – (4 ‒ 5n) = −5.
Vậy un = 4 ‒ 5n là cấp số cộng với số hạng đầu u1 = ‒1 và công sai d = ‒5.

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Số hạng tổng quát của cấp số cộng (un) là:
un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.
b) Ta có u99 = 3.99 + 2 = 299.
c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.
Vậy số 1502 là số hạng thứ 500 .
d)
Suy ra n(10 + 3n – 3) = 2 . 34 275
Hay 3n2 + 7n – 68 550 = 0
Suy ra
Mà n ≥ 2 nên n = 150.
Lời giải
a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5
Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.
Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.
b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.
Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.
Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.
c) Xét un = n2 + 1 có:
u1 = 12 + 1 = 2;
u2 = 22 + 1 = 5;
u3 = 32 + 1 = 10
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.