Câu hỏi:

13/07/2024 9,830

Cho cấp số cộng (un), biết u1 = 5d = 3.

a) Tìm số hạng tổng quát của cấp số cộng (un).

b) Tìm u99.

c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng (un)?

d) Cho biết Sn = 34 275. Tìm n.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Số hạng tổng quát của cấp số cộng (un) là:

un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.

b) Ta có u99 = 3.99 + 2 = 299.

c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.

Vậy số 1502 là số hạng thứ 500 .

d) Sn=34  275=n2u1+n1d2=n25+n132

Suy ra n(10 + 3n – 3) = 2 . 34 275

Hay 3n2 + 7n – 68 550 = 0

Suy ra n=150n=4572

Mà n ≥ 2 nên n = 150.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5

Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.

Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.

b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.

Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.

Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.

c) Xét un = n2 + 1 có:

u1 = 12 + 1 = 2;

u2 = 22 + 1 = 5;

u3 = 32 + 1 = 10

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un = n2 + 1 không phải là cấp số cộng.

d) Xét un=2n có:

u1=21=2; u2=22=1; u3=23.

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un=2n không phải là cấp số cộng.

Lời giải

Gọi un là số tiền lương của bác Tư nhận được vào năm thứ n.

Khi đó, dãy số (un) tạo thành cấp số cộng có u1 = 240d = 12.

Ta có u11 = u1 + 10d = 240 + 10.12 = 360.

Vậy vào năm thứ 11, số tiền lương một năm của bác Tư là 360 triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP