Câu hỏi:

11/07/2024 5,835

Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.

a) Tìm số hạng đầu và công sai của cấp số cộng (un).

b) Tìm u2012.

c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).

d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: u1 = 7.1 ‒ 3 = 4; u2 = 7.2 ‒ 3 = 11.

Vậy cấp số cộng (un) có số hạng đầu u1 = 4 và công sai d = u2 ‒ u1 = 11 ‒ 4 = 7.

b) u2012 = 7.2012 ‒ 3 = 14081.

c) u100 = 7.100 ‒ 3 = 697.

S100=100u1+u1002=1004+6972=35  050.

d) Ta có un = 1 208

Do đó 7n ‒ 3 = 1 208

Suy ra n = 173

Vậy số 1 208 là số hạng thứ 173 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Số hạng tổng quát của cấp số cộng (un) là:

un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.

b) Ta có u99 = 3.99 + 2 = 299.

c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.

Vậy số 1502 là số hạng thứ 500 .

d) Sn=34  275=n2u1+n1d2=n25+n132

Suy ra n(10 + 3n – 3) = 2 . 34 275

Hay 3n2 + 7n – 68 550 = 0

Suy ra n=150n=4572

Mà n ≥ 2 nên n = 150.

Lời giải

a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5

Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.

Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.

b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.

Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.

Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.

c) Xét un = n2 + 1 có:

u1 = 12 + 1 = 2;

u2 = 22 + 1 = 5;

u3 = 32 + 1 = 10

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un = n2 + 1 không phải là cấp số cộng.

d) Xét un=2n có:

u1=21=2; u2=22=1; u3=23.

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un=2n không phải là cấp số cộng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP