Câu hỏi:
11/07/2024 5,835
Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.
a) Tìm số hạng đầu và công sai của cấp số cộng (un).
b) Tìm u2012.
c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).
d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?
Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.
a) Tìm số hạng đầu và công sai của cấp số cộng (un).
b) Tìm u2012.
c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).
d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?
Câu hỏi trong đề: Giải SBT Toán 11 CTST Bài 2. Cấp số cộng có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: u1 = 7.1 ‒ 3 = 4; u2 = 7.2 ‒ 3 = 11.
Vậy cấp số cộng (un) có số hạng đầu u1 = 4 và công sai d = u2 ‒ u1 = 11 ‒ 4 = 7.
b) u2012 = 7.2012 ‒ 3 = 14081.
c) u100 = 7.100 ‒ 3 = 697.
d) Ta có un = 1 208
Do đó 7n ‒ 3 = 1 208
Suy ra n = 173
Vậy số 1 208 là số hạng thứ 173 .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Số hạng tổng quát của cấp số cộng (un) là:
un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.
b) Ta có u99 = 3.99 + 2 = 299.
c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.
Vậy số 1502 là số hạng thứ 500 .
d)
Suy ra n(10 + 3n – 3) = 2 . 34 275
Hay 3n2 + 7n – 68 550 = 0
Suy ra
Mà n ≥ 2 nên n = 150.
Lời giải
a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5
Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.
Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.
b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.
Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.
Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.
c) Xét un = n2 + 1 có:
u1 = 12 + 1 = 2;
u2 = 22 + 1 = 5;
u3 = 32 + 1 = 10
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.