Câu hỏi:

13/07/2024 4,105 Lưu

Cho hàm số fx=x2x           khix0x3+mx   khix>0,  với m là tham số. Tìm m để hàm số có đạo hàm tại mọi x Î ℝ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+) Với x < 0 thì f(x) = x2 – x. Có f'(x) = 2x – 1.

+) Với x > 0 thì f(x) = −x3 + mx. Có f'(x) = −3x2 + m.

Hàm số có đạo hàm tại mọi x Î ℝ khi và chỉ khi tồn tại f'(0).

Ta đi tính đạo hàm bên trái và đạo hàm bên phải tại điểm x = 0.

Có limx0+fxf0x0=limx0+x3+mxx=limx0+x2+m=m

limx0fxf0x0=limx0x2xx=limx0x1=1

Do vậy hàm số có đạo hàm tại mọi x Î ℝ khi và chỉ khi m = −1.

Vậy m = −1 là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Hệ số góc của tiếp tuyến của đồ thị hàm số có dạng:

k = y'=23x34x2+5x+3' = 2x2 – 8x + 5.

Có k = 2x2 – 8x + 5 = 2(x2 – 4x) + 5 = 2(x2 – 4x + 4) – 3 = 2(x – 2)2 – 3 ³ − 3.

Dấu “=” xảy ra khi x – 2 = 0 hay x = 2.

Do đó hệ số góc nhỏ nhất của tiếp tuyến là −3 khi x = 2;  y=73

Phương trình tiếp tuyến của đồ thị hàm số là y=3x2+73=3x+253

Vậy y=3x+253  là tiếp tuyến cần tìm.

Lời giải

Đáp án đúng là: B

Hệ số góc của tiếp tuyến của đồ thị hàm số có dạng:

k = y' = (−x3 + 6x2 – 9x + 1)' = −3x2 + 12x – 9.

Có k = −3x2 + 12x – 9 = −3(x2 – 4x) – 9 = −3(x2 – 4x + 4) + 3 = −3(x − 2)2 + 3 ≤ 3.

Dấu “=” xảy ra khi x – 2 = 0 hay x = 2.

Do đó hệ số góc lớn nhất của tiếp tuyến của đồ thị hàm số là 3 khi x = 2; y = −1.

Phương trình tiếp tuyến của đồ thị hàm số là y = 3(x – 2) – 1= 3x – 7.

Vậy y = 3x – 7 là tiếp tuyến cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP