Câu hỏi:

12/07/2024 462

b) H là trực tâm của tam giác ABC;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Vì BC (OAH) nên BC AH, do đó AH là đường cao của tam giác ABC. (1)

Có OH (ABC) nên OH AC.

Có OB OA, OC OB nên OB (OAC) nên OB AC mà OH AC, từ đó suy ra AC (OBH), suy ra CA ^ BH, do đó BH là đường cao của tam giác ABC. (2)

Từ (1) và (2) suy ra H là giao hai đường cao của tam giác ABC.

Do đó H là trực tâm của tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Kẻ AM vuông góc với SB tại M và AN vuông góc với SC tại N. Chứng minh rằng:

a) BC (SAB);

b) AM (SBC);

c) SC (AMN).

Xem đáp án » 13/07/2024 10,514

Câu 2:

Cho hình lăng trụ tam giác ABC.A'B'C' có AA' vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Chứng minh rằng:

a) BB' (A'B'C');

b) B'C' (ABB'A').

Xem đáp án » 13/07/2024 6,267

Câu 3:

Cho hình chóp S.ABC có SA ^ (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:

a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;

b) SB (CHK) và HK (SBC).

Xem đáp án » 13/07/2024 4,176

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:

a) SO (ABCD);

b) AC (SBD) và BD (SAC).

Xem đáp án » 13/07/2024 3,176

Câu 5:

c) 1OH2=1OA2+1OB2+1OC2.

Xem đáp án » 13/07/2024 2,637

Câu 6:

Cho tứ diện ABCD có AB = AC và DB = DC. Chứng minh rằng AD BC.

Xem đáp án » 12/07/2024 1,062

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store