Câu hỏi:

13/07/2024 7,408

Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM) (ABC) và (CDM)  (ABD).

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (ảnh 1)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Gọi H, M lần lượt là trung điểm của các cạnh AD và AB.

a) Tính côsin của góc giữa đường thẳng SC và mặt đáy (ABCD).

Xem đáp án » 13/07/2024 12,590

Câu 2:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau:

a) Mặt phẳng (SAB) và mặt phẳng (ABCD);

Xem đáp án » 12/07/2024 9,910

Câu 3:

Cho tứ diện đều ABCD có độ dài các cạnh bằng a. Gọi M là trung điểm của CD, kẻ AH vuông góc với BM tại H.

a) Chứng minh rằng AH (BCD).

Xem đáp án » 13/07/2024 7,043

Câu 4:

b) Mặt phẳng (SAB) và mặt phẳng (SBC).

Xem đáp án » 12/07/2024 2,905

Câu 5:

b) Chứng minh rằng (SMD) (SHC).

Xem đáp án » 12/07/2024 1,446

Câu 6:

Một viên bi được thả lăn trên một mặt phẳng nằm nghiêng (so với mặt phẳng nằm ngang). Coi viên bi chịu tác dụng của hai lực chính là lực hút của Trái Đất (theo phương thẳng đứng, hướng xuống dưới) và phản lực, vuông góc với mặt phẳng nằm nghiêng, hướng lên trên. Giải thích vì sao viên bi di chuyển trên một đường thẳng vuông góc với giao tuyến của mặt phẳng nằm nghiêng và mặt phẳng nằm ngang.

Xem đáp án » 12/07/2024 1,342
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua