Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
b) Gọi K là trung điểm của SB.
Xét tam giác SAB đều có AK là trung tuyến nên AK đồng thời là đường cao.
Suy ra AK SB.
Xét tam giác SCB đều có CK là trung tuyến nên CK đồng thời là đường cao.
Suy ra CK SB.
Do đó góc giữa hai mặt phẳng (SAB) và mặt phẳng (SBC) bằng góc giữa hai đường thẳng AK và CK.
Ta có AK, CK là đường cao của các tam giác đều cạnh a nên .
Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2 = a2 + a2 = 2a2 ⇒.
Áp dụng định lí côsin trong tam giác ACK, ta có:
, suy ra .
Vậy côsin góc giữa hai mặt phẳng (SAB) và mặt phẳng (SBC) bằng .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau:
a) Mặt phẳng (SAB) và mặt phẳng (ABCD);
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Gọi H, M lần lượt là trung điểm của các cạnh AD và AB.
a) Tính côsin của góc giữa đường thẳng SC và mặt đáy (ABCD).
Câu 3:
Cho tứ diện đều ABCD có độ dài các cạnh bằng a. Gọi M là trung điểm của CD, kẻ AH vuông góc với BM tại H.
a) Chứng minh rằng AH (BCD).
Câu 4:
Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM) (ABC) và (CDM) (ABD).
Câu 6:
Một viên bi được thả lăn trên một mặt phẳng nằm nghiêng (so với mặt phẳng nằm ngang). Coi viên bi chịu tác dụng của hai lực chính là lực hút của Trái Đất (theo phương thẳng đứng, hướng xuống dưới) và phản lực, vuông góc với mặt phẳng nằm nghiêng, hướng lên trên. Giải thích vì sao viên bi di chuyển trên một đường thẳng vuông góc với giao tuyến của mặt phẳng nằm nghiêng và mặt phẳng nằm ngang.
về câu hỏi!