Câu hỏi:

13/07/2024 996

Cho tam giác ABC và tam giác A'B'C' như Hình 2.

a) Hãy viết các cặp góc bằng nhau.

b) Tính và so sánh các tỉ số \[\frac{{A'B'}}{{AB}};\;\;\frac{{A'C'}}{{AC}};\;\frac{{B'C'}}{{BC}}\].

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Từ các kí hiệu trên hình vẽ, ta thấy các cặp góc bằng nhau: \[\widehat A = \widehat {A'};\;\widehat B = \widehat {B';}\;\widehat C = \widehat {C'}\].

b) • \[\frac{{A'B'}}{{AB}} = \frac{6}{4} = \frac{3}{2}\];

    \[\frac{{A'C'}}{{AC}} = \frac{{7,5}}{5} = \frac{3}{2}\];

    \[\frac{{B'C'}}{{BC}} = \frac{9}{6} = \frac{3}{2}\].

Vậy \[\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Do ΔABC ΔDEF nên \[\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}} = \frac{{AC}}{{DF}} = \frac{2}{5}\]

Chu vi tam giác ABC

\[{P_{ABC}} = AB + BC + AC = \frac{2}{5}\left( {DE + EF + DF} \right)\]

Chu vi tam giác DEF

\[{P_{DEF}} = DE + EF + DF\]

Tỉ số chu vi của hai tam giác ABC và DEF là:

\[\frac{{{P_{ABC}}}}{{{P_{DEF}}}} = \frac{{\frac{2}{5}\left( {DE + EF + DF} \right)}}{{DE + EF + DF}} = \frac{2}{5}\].

Vậy tỉ số chu vi của hai tam giác đã cho là \[\frac{2}{5}\].

b) Ta có: \[\frac{{{P_{ABC}}}}{{{P_{DEF}}}} = \frac{2}{5}\]

\[{P_{DEF}} - {P_{ABC}} = 36\]

Do đó \[{P_{ABC}} = 24\;cm;\,\,{P_{DEF}} = 60\;cm\].

Vậy chu vi tam giác ABC là 24 cm và chu vi tam giác DEF là 60 cm.

Lời giải

Lời giải:

a) Xét tam giác ABC có DE // BC nên ΔADE ΔABC.

b) ΔADE ΔABC nên \[\frac{{AD}}{{AB}} = \frac{{DE}}{{BC}}\] hay \[\frac{{22}}{{BC}} = \frac{{16}}{{30}}\].

Do đó \[BC = \frac{{30\,.\,22}}{{16}} = 41,25\;\left( m \right).\]

Vậy BC = 41,25 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP