Câu hỏi:
13/07/2024 1,545Quan sát Hình 12. Chứng minh rằng:
a) ΔABH ᔕ ΔDCB.
b) \[\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có BH ⊥ AE, CJ ⊥ AE nên BH // CJ.
Suy ra \[\widehat {ABH} = \widehat {BCD\;}\] (hai góc so le trong)
Xét hai tam giác vuông ABH và DCB có:
\[\widehat {ABH} = \widehat {BCD\;}\] (chứng minh trên).
Suy ra ΔABH ᔕ ΔDCB (g.g).
b) ΔABH ᔕ ΔDCB nên \[\widehat A = \widehat {BDC}\].
Xét tam giác vuông DCB và AEB ta có: \[\widehat A = \widehat {BDC}\].
Suy ra ΔDCB ᔕ ΔAEB (g.g) nên \[\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\] (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HM vuông góc với AB tại M.
a) Chứng minh rằng ΔAMH ᔕ ΔAHB.
b) Kẻ HN vuông góc với AC tại N. Chứng minh rằng AM.AB = AN.AC.
c) Chứng minh rằng ΔANM ᔕ ΔABC.
d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác AMH.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Quan sát hình 9
a) Chứng minh rằng ΔDEF ᔕ ΔHDF.
b) Chứng minh DF2 = FH.FE.
c) Biết EF = 15 cm, FH = 5,4 cm. Tính độ dài đoạn thẳng DF.
Câu 6:
về câu hỏi!