Câu hỏi:
13/07/2024 3,311Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Gọi chiều cao của tòa nhà là h = A'C' và cọc tiêu AC = 3 m.
Khoảng cách từ chân đến mắt người đo là DE = 1,5 m.
Cọc xa cây một khoảng A'A = 27 m, và người cách cọc một khoảng AD = 1,2 m và gọi B là giao điểm của C'E và A'A.
Vì A'C' ⊥ A'B, AC ⊥ A'B, DE ⊥ A'B nên A'C' // AC // DE.
• ΔDEB ᔕ ΔACB (vì DE // AC)
Suy ra \[\frac{{DE}}{{AC}} = \frac{{DB}}{{AB}}\] (các cặp cạnh tương ứng).
Mà AC = 3 m; DE = 1,5 m nên
\[\frac{{1,5}}{3} = \frac{{DB}}{{AB}} \Rightarrow \frac{{DB}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{DB}}{1} = \frac{{AB}}{2}\]
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\[\frac{{DB}}{1} = \frac{{AB}}{2} = \frac{{AB - DB}}{{2 - 1}} = \frac{{AD}}{1} = 1,2\]
Suy ra \[\frac{{DB}}{1} = 1,2\] nên DB = 1,2
\[\frac{{AB}}{2} = 1,2\] suy ra AB = 2,4
Do đó A'B = A'A + AD + DB = 27 + 1,2 + 1,2 = 29,4 (m)
• ΔACB ᔕ ΔA'C'B (vì AC // A'C')
Suy ra \[\frac{{AB}}{{A\prime B}} = \frac{{AC}}{{A\prime C\prime }}\] (các cặp cạnh tương ứng).
Do đó \[A\prime C\prime = \frac{{AC.A\prime B}}{{AB}} = \frac{{2.29,4}}{{2,4}} = 24,5\,\,(m)\]
Vậy tòa nhà cao 24,5 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HM vuông góc với AB tại M.
a) Chứng minh rằng ΔAMH ᔕ ΔAHB.
b) Kẻ HN vuông góc với AC tại N. Chứng minh rằng AM.AB = AN.AC.
c) Chứng minh rằng ΔANM ᔕ ΔABC.
d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác AMH.
Câu 2:
Câu 3:
Câu 4:
Quan sát hình 9
a) Chứng minh rằng ΔDEF ᔕ ΔHDF.
b) Chứng minh DF2 = FH.FE.
c) Biết EF = 15 cm, FH = 5,4 cm. Tính độ dài đoạn thẳng DF.
Câu 5:
Câu 6:
Quan sát Hình 12. Chứng minh rằng:
a) ΔABH ᔕ ΔDCB.
b) \[\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\].
về câu hỏi!