Câu hỏi:

13/07/2024 1,240 Lưu

Biết tam giác ABC có chu vi bằng 15 cm. Tính chu vi tam giác MBN.

Biết tam giác ABC có chu vi bằng 15 cm. Tính chu vi tam giác MBN (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có MBN ∆ABC.

Khi đó, tỉ số chu vi của hai tam giác bằng tỉ số đồng dạng là:

\[\frac{{{P_{MBN}}}}{{{P_{ABC}}}} = \frac{1}{3}\] hay \[\frac{{{P_{MBN}}}}{{15}} = \frac{1}{3}\].

Do đó \[{P_{MBN}} = \frac{{1.15}}{3} = 5\].

Vậy chu vi tam giác MBN là 5 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\frac{{AB}}{{DE}} = \frac{6}{8} = \frac{3}{4}\]; \[\frac{{BC}}{{EF}} = \frac{9}{{12}} = \frac{3}{4}\], suy ra \[\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\].

Xét ABC và ∆DEF có

\[\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\]\[\widehat B = \widehat E\]

Do đó ABC DEF (c.g.c).

Lời giải

Tia phân giác của góc BAC cắt DE tại M và cắt BC tại N.  Chứng minh rằng  (ảnh 1)

Ta có ∆AED ∆ABC suy ra \[\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\] hay \[\frac{{AE}}{{AD}} = \frac{{AB}}{{AC}}\] (1)

Vì AM là tia  phân giác của \[\widehat {DAE}\] nên \[\frac{{ME}}{{MD}} = \frac{{AE}}{{AD}}\]                   (2)

Vì AN là tia phân giác của \[\widehat {BAC}\] nên \[\frac{{NB}}{{NC}} = \frac{{AB}}{{AC}}\]                             (3)

Từ (1); (2) và (3) suy ra \[\frac{{ME}}{{MD}} = \frac{{NB}}{{NC}}\] hay ME . NC = MD . NB (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP