Câu hỏi:

13/07/2024 2,602

Quan sát Hình 8.

Chứng minh rằng ABC đồng dạng với DEF.

Chứng minh rằng tam giác ABC đồng dạng tam giác DEF (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[\frac{{AB}}{{DE}} = \frac{6}{8} = \frac{3}{4}\]; \[\frac{{BC}}{{EF}} = \frac{9}{{12}} = \frac{3}{4}\], suy ra \[\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\].

Xét ABC và ∆DEF có

\[\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}\]\[\widehat B = \widehat E\]

Do đó ABC DEF (c.g.c).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tia phân giác của góc BAC cắt DE tại M và cắt BC tại N.  Chứng minh rằng  (ảnh 1)

Ta có ∆AED ∆ABC suy ra \[\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\] hay \[\frac{{AE}}{{AD}} = \frac{{AB}}{{AC}}\] (1)

Vì AM là tia  phân giác của \[\widehat {DAE}\] nên \[\frac{{ME}}{{MD}} = \frac{{AE}}{{AD}}\]                   (2)

Vì AN là tia phân giác của \[\widehat {BAC}\] nên \[\frac{{NB}}{{NC}} = \frac{{AB}}{{AC}}\]                             (3)

Từ (1); (2) và (3) suy ra \[\frac{{ME}}{{MD}} = \frac{{NB}}{{NC}}\] hay ME . NC = MD . NB (đpcm).

Lời giải

Ta có ∆A’B’C’ ABC, suy ra

\[\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\]hay \[\frac{{A'B'}}{9} = \frac{{A'C'}}{{12}} = \frac{{B'C'}}{{14}}\].

Áp dụng tính chất tỉ lệ thức, có:

\[\frac{{A'B'}}{9} = \frac{{A'C'}}{{12}} = \frac{{B'C'}}{{14}}\]= \[\frac{{A'B' + A'C' + B'C'}}{{9 + 12 + 14}} = \frac{{61,25}}{{35}} = \frac{7}{4}\].

Suy ra \[\frac{{A'B'}}{9} = \frac{7}{4}\] ; \[\frac{{A'C'}}{{12}} = \frac{7}{4}\]\[\frac{{B'C'}}{{14}} = \frac{7}{4}\].

Do đó \[A'B' = \frac{{7.9}}{4} = 15,75\]; \[A'C' = \frac{{7.12}}{4} = 21\]\[B'C' = \frac{{7.14}}{4} = 24,5\].

Vậy A’B’ = 15,75 cm ; A’C’ = 21 cm và B’C’ = 24,5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay