Câu hỏi:

04/12/2023 420 Lưu

Cho tam giác ABC cân tại A. Đường cao AH. Lấy điểm M tùy ý trên cạnh BC. Độ dài AM nhỏ nhất khi

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Cho tam giác ABC cân tại A. Đường cao AH. Lấy điểm M tùy ý trên cạnh BC. Độ dài AM nhỏ nhất khi (ảnh 1)

Xét tam giác ABC có AH là đường cao nên AH BC.

Suy ra AH là đường vuông góc kẻ từ A đến BC nên AH là đường ngắn nhất trong tam giác ABC.

Suy ra khi M trùng H thì AM nhỏ nhất.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Cho tam giác ABC, điểm D nằm giữa B và C. Gọi H, K lần lượt là chân các đường vuông góc kẻ từ điểm (ảnh 1)

Ta có DH, DB lần lượt là đường vuông góc, đường xiên kẻ từ điểm D đến đường thẳng AB nên DH < DB    (1).

Tương tự, ta có DK, DC lần lượt là đường vuông góc, đường xiên kẻ từ điểm D đến đường thẳng AC nên DK < DC    (2).

Từ (1), (2), ta suy ra DH + DK < DB + DC = BC.

Khi đó ta có DH + DK < BC.

Vậy ta chọn phương án B.

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Xét tam giác ABH và tam giác AHC có:

AHB^=AHC^=90°;

AH là cạnh chung;

BH = CH (giả thiết)

Suy ra ΔABH = ΔACH (hai cạnh góc vuông).

Do đó AB = AC (hai cạnh tương ứng). Do đó khẳng định A là đúng.

Vì AH là đường vuông góc, AC và AK là các đường xiên kẻ từ A đến đường thẳng BM nên AH < AC, AH < AK. Do đó khẳng định D đúng, khẳng định C sai.

Xét AKM có AKM^=AHK^+HAK^>AHK^=90° nên AKM^ là góc tù.

Do đó cạnh AM là lớn nhất nên AK < AM. Do đó khẳng định B đúng.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP