Câu hỏi:

04/12/2023 252

Cho ∆ABC vuông tại B. Điểm nào là trực tâm của ∆ABC?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Vì ∆ABC vuông tại B.

Suy ra AB BC nên AB là đường cao; CB BA nên CB là đường cao.

Do đó B là giao điểm của các đường cao kẻ từ A và từ C.

Vậy B là trực tâm của ∆ABC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho ∆ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông góc với BC tại N. Từ C kẻ đường thẳng vuông góc với BM tại P. Gọi D là giao điểm của AB và CP. Khẳng định nào sau đây sai?

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho vuông góc ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông (ảnh 1)

• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.

Do đó phương án A đúng.

• Vì M là trực tâm của ∆DBC nên DM BC. Do đó phương án B đúng.

• Ta có DM BC (chứng minh trên).

Mà MN BC (giả thiết).

Suy ra D, M, N thẳng hàng.

Do đó phương án C đúng.

Ta có:

+) D MN (do D, M, N thẳng hàng);

+) D AB (giả thiết);

+) D CP (giả thiết).

Suy ra AB, MN, CP cùng đồng quy tại điểm D.

Do đó phương án D sai.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC vuông tại A, trên tia BA lấy M sao cho BM = BC. Tia phân giác góc B cắt AC tại H. Khẳng (ảnh 1)

Xét ΔBHM ∆BHC có:

BH là cạnh chung,

ABH^=CBH^ (do BH là tia phân giác của góc ABC),

BM = BC (giả thiết)

Do đó ΔBHM = ∆BHC (c.g.c)

Suy ra MH = HC (hai cạnh tương ứng), nên C là khẳng định đúng.

Vì BM = BC HM = HC nên BH là đường trung trực của MC.

Do đó BH MC hay BH là đường cao của tam giác MBC.

Xét DBMC có hai đường cao BH CA cắt nhau tại H nên H là trực tâm tam giác BMC. (Khẳng định B là đúng)

Do đó MH BC nên khẳng định A là đúng.

Vậy ta chọn phương án D.

Câu 3

Cho hình vẽ

Cho hình vẽ.    Các đường cao của ∆PQG cắt nhau tại O thì  A. điểm O là trọng tâm của ∆PQG; B. điểm O là trực tâm của  (ảnh 1)

Các đường cao của ∆PQG cắt nhau tại O thì

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Giao của ba đường cao trong một tam giác có tên gọi là gì?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Quan sát hình vẽ dưới đây.

Quan sát hình vẽ dưới đây.    Khẳng định nào dưới đây là sai? A. Trực tâm của  (ảnh 1)

Khẳng định nào dưới đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Hãy chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay