Câu hỏi:

04/12/2023 263

Cho ∆ABC vuông tại B. Điểm nào là trực tâm của ∆ABC?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Vì ∆ABC vuông tại B.

Suy ra AB BC nên AB là đường cao; CB BA nên CB là đường cao.

Do đó B là giao điểm của các đường cao kẻ từ A và từ C.

Vậy B là trực tâm của ∆ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho vuông góc ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông (ảnh 1)

• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.

Do đó phương án A đúng.

• Vì M là trực tâm của ∆DBC nên DM BC. Do đó phương án B đúng.

• Ta có DM BC (chứng minh trên).

Mà MN BC (giả thiết).

Suy ra D, M, N thẳng hàng.

Do đó phương án C đúng.

Ta có:

+) D MN (do D, M, N thẳng hàng);

+) D AB (giả thiết);

+) D CP (giả thiết).

Suy ra AB, MN, CP cùng đồng quy tại điểm D.

Do đó phương án D sai.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC vuông tại A, trên tia BA lấy M sao cho BM = BC. Tia phân giác góc B cắt AC tại H. Khẳng (ảnh 1)

Xét ΔBHM ∆BHC có:

BH là cạnh chung,

ABH^=CBH^ (do BH là tia phân giác của góc ABC),

BM = BC (giả thiết)

Do đó ΔBHM = ∆BHC (c.g.c)

Suy ra MH = HC (hai cạnh tương ứng), nên C là khẳng định đúng.

Vì BM = BC HM = HC nên BH là đường trung trực của MC.

Do đó BH MC hay BH là đường cao của tam giác MBC.

Xét DBMC có hai đường cao BH CA cắt nhau tại H nên H là trực tâm tam giác BMC. (Khẳng định B là đúng)

Do đó MH BC nên khẳng định A là đúng.

Vậy ta chọn phương án D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP