Câu hỏi:

04/12/2023 256

Trên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài đường thẳng d sao cho MJ vuông góc với d tại J. Đường thẳng qua I vuông góc với MK cắt MJ tại N. Điểm nào là trực tâm của tam giác MIK?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Trên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài đường (ảnh 1)

Ta có: MJ IK tại J nên MJ là đường cao của ∆MIK.

Mà N nằm trên đường thẳng qua I và vuông góc với MK nên IN MK.

Do đó IN là đường cao của ΔMIK.

Xét ∆MIK có hai đường cao IN và MJ cắt nhau tại N nên N là trực tâm của ΔMIK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho vuông góc ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông (ảnh 1)

• Xét ∆DBC có CA, BP là hai đường cao cắt nhau tại M nên M là trực tâm của ∆DBC.

Do đó phương án A đúng.

• Vì M là trực tâm của ∆DBC nên DM BC. Do đó phương án B đúng.

• Ta có DM BC (chứng minh trên).

Mà MN BC (giả thiết).

Suy ra D, M, N thẳng hàng.

Do đó phương án C đúng.

Ta có:

+) D MN (do D, M, N thẳng hàng);

+) D AB (giả thiết);

+) D CP (giả thiết).

Suy ra AB, MN, CP cùng đồng quy tại điểm D.

Do đó phương án D sai.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC vuông tại A, trên tia BA lấy M sao cho BM = BC. Tia phân giác góc B cắt AC tại H. Khẳng (ảnh 1)

Xét ΔBHM ∆BHC có:

BH là cạnh chung,

ABH^=CBH^ (do BH là tia phân giác của góc ABC),

BM = BC (giả thiết)

Do đó ΔBHM = ∆BHC (c.g.c)

Suy ra MH = HC (hai cạnh tương ứng), nên C là khẳng định đúng.

Vì BM = BC HM = HC nên BH là đường trung trực của MC.

Do đó BH MC hay BH là đường cao của tam giác MBC.

Xét DBMC có hai đường cao BH CA cắt nhau tại H nên H là trực tâm tam giác BMC. (Khẳng định B là đúng)

Do đó MH BC nên khẳng định A là đúng.

Vậy ta chọn phương án D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP