Câu hỏi:

13/07/2024 247

Đa thức nào sau đây không thể chọn làm mẫu thức chung của hai phân thức \[\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}}\]\[\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}}\] ?

A. 3(x2 – 1)(x2 – 4)(x2 – x + 1).

B. 3(x2 – 1)(x2 – 4)(x3 + 1).

C. 3(x2 – 1)(x2 – 4)(x2 + x + 1).

D. 3(x4 – 1)(x6 – 1)(x6 – 64).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \[\frac{x}{{3\left( {{x^2} - 1} \right)\left( {x + 2} \right)}} = \frac{x}{{3\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}}\]

\[\frac{{{x^3} - x + 1}}{{\left( {{x^2} - 4} \right)\left( {{x^3} + 1} \right)}} = \frac{{{x^3} - x + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\]

Do đó, mẫu thức chung là:

3(x – 1)(x + 1)(x – 2)(x + 2)(x2 – x + 1) = 3(x2 – 1)(x2 – 4)(x2 – x + 1)

Do đó, không thể chọn mẫu thức chung là: 3(x2 – 1)(x2 – 4)(x2 + x + 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức P = \(\frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\).

Xem đáp án » 13/07/2024 6,598

Câu 2:

Cho phân thức \(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\) (a ≠ 0, y ≠ x, y ≠ –x). Chứng minh rằng P có giá trị không phụ thuộc vào x, y.

Xem đáp án » 13/07/2024 2,937

Câu 3:

Biểu thức nào sau đây không phải là phân thức đại số ?

A. 2x + 1.             

B. \(\sqrt 5 \).                

C. π.                    

D. \(\sqrt x \).

Xem đáp án » 13/07/2024 1,844

Câu 4:

Cho phân thức \(P = \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\).

Rút gọn phân thức đã cho.

Xem đáp án » 13/07/2024 1,225

Câu 5:

Biết x + y + z = 0 và x, y ≠ 0. Chứng minh phân thức \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}}\) có giá trị không đổi.

Xem đáp án » 13/07/2024 1,140

Câu 6:

Rút gọn biểu thức \(P = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right).\left( {\frac{{2x}}{y} + \frac{{4x}}{{x - y}}} \right):\frac{1}{y}\) (y ≠ 0, y ≠ x, y ≠ –x).

Xem đáp án » 13/07/2024 876

Câu 7:

Cho phân thức \(P = \frac{{{x^2} - 4x + 12}}{{{x^2} - 4x + 10}}\). Đặt t = x – 2, hãy biểu diễn P dưới dạng một phân thức của biến t. Từ đó suy ra P luôn nhận giá trị dương.

Xem đáp án » 13/07/2024 723

Bình luận


Bình luận