Câu hỏi:

13/07/2024 692

Cho x + y + z = 0 và x, y, z ≠ 0. Rút gọn biểu thức sau:

\(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo đề bài ta có: x + y + z = 0, suy ra z = –x – y.

Do đó, ta có:

\(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\)

\( = \frac{{xy}}{{{x^2} + {y^2} - {{\left( { - x - y} \right)}^2}}} + \frac{{y\left( { - x - y} \right)}}{{{y^2} + {{\left( { - x - y} \right)}^2} - {x^2}}} + \frac{{\left( { - x - y} \right)x}}{{{{\left( { - x - y} \right)}^2} + {x^2} - {y^2}}}\)

\( = \frac{{xy}}{{{x^2} + {y^2} - {{\left( {x + y} \right)}^2}}} + \frac{{ - xy - {y^2}}}{{{y^2} + {{\left( {x + y} \right)}^2} - {x^2}}} + \frac{{ - {x^2} - xy}}{{{{\left( {x + y} \right)}^2} + {x^2} - {y^2}}}\)

\( = \frac{{xy}}{{{x^2} + {y^2} - {x^2} - {y^2} - 2xy}} + \frac{{ - xy - {y^2}}}{{{y^2} + {x^2} + 2xy + {y^2} - {x^2}}} + \frac{{ - {x^2} - xy}}{{{x^2} + 2xy + {y^2} + {x^2} - {y^2}}}\)

\( = \frac{{xy}}{{ - 2xy}} + \frac{{ - xy - {y^2}}}{{2{y^2} + 2xy}} + \frac{{ - {x^2} - xy}}{{2{x^2} + 2xy}}\)

\( = \frac{{ - 1}}{2} + \frac{{ - y\left( {x + y} \right)}}{{2y\left( {y + x} \right)}} + \frac{{ - x\left( {x + y} \right)}}{{2x\left( {x + y} \right)}}\)

\( = \frac{{ - 1}}{2} + \frac{{ - 1}}{2} + \frac{{ - 1}}{2}\)\( = \frac{{ - 3}}{2}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức P = \(\frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\).

Xem đáp án » 13/07/2024 11,819

Câu 2:

Cho phân thức \(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\) (a ≠ 0, y ≠ x, y ≠ –x). Chứng minh rằng P có giá trị không phụ thuộc vào x, y.

Xem đáp án » 13/07/2024 6,716

Câu 3:

Biểu thức nào sau đây không phải là phân thức đại số ?

A. 2x + 1.             

B. \(\sqrt 5 \).                

C. π.                    

D. \(\sqrt x \).

Xem đáp án » 13/07/2024 4,429

Câu 4:

Rút gọn biểu thức \(P = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right).\left( {\frac{{2x}}{y} + \frac{{4x}}{{x - y}}} \right):\frac{1}{y}\) (y ≠ 0, y ≠ x, y ≠ –x).

Xem đáp án » 13/07/2024 2,176

Câu 5:

Cho phân thức \(P = \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\).

Rút gọn phân thức đã cho.

Xem đáp án » 13/07/2024 1,855

Câu 6:

Biết x + y + z = 0 và x, y ≠ 0. Chứng minh phân thức \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}}\) có giá trị không đổi.

Xem đáp án » 13/07/2024 1,745

Câu 7:

Cho hai phân thức: \(P = \frac{1}{{2{x^2} + 7x - 15}}\)\(Q = \frac{1}{{{x^2} + 3x - 10}}\). Có thể quy đồng mẫu thức hai phân thức đã cho với mẫu thức chung là M = 2x3 + 3x2 – 29x + 30 được không ? Vì sao?

Xem đáp án » 13/07/2024 1,182
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay