Câu hỏi:
13/07/2024 719Cho x + y + z = 0 và x, y, z ≠ 0. Rút gọn biểu thức sau:
\(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\).
Câu hỏi trong đề: Giải SBT Toán 8 KNTT Ôn tập chương 6 có đáp án !!
Quảng cáo
Trả lời:
Theo đề bài ta có: x + y + z = 0, suy ra z = –x – y.
Do đó, ta có:
\(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\)
\( = \frac{{xy}}{{{x^2} + {y^2} - {{\left( { - x - y} \right)}^2}}} + \frac{{y\left( { - x - y} \right)}}{{{y^2} + {{\left( { - x - y} \right)}^2} - {x^2}}} + \frac{{\left( { - x - y} \right)x}}{{{{\left( { - x - y} \right)}^2} + {x^2} - {y^2}}}\)
\( = \frac{{xy}}{{{x^2} + {y^2} - {{\left( {x + y} \right)}^2}}} + \frac{{ - xy - {y^2}}}{{{y^2} + {{\left( {x + y} \right)}^2} - {x^2}}} + \frac{{ - {x^2} - xy}}{{{{\left( {x + y} \right)}^2} + {x^2} - {y^2}}}\)
\( = \frac{{xy}}{{{x^2} + {y^2} - {x^2} - {y^2} - 2xy}} + \frac{{ - xy - {y^2}}}{{{y^2} + {x^2} + 2xy + {y^2} - {x^2}}} + \frac{{ - {x^2} - xy}}{{{x^2} + 2xy + {y^2} + {x^2} - {y^2}}}\)
\( = \frac{{xy}}{{ - 2xy}} + \frac{{ - xy - {y^2}}}{{2{y^2} + 2xy}} + \frac{{ - {x^2} - xy}}{{2{x^2} + 2xy}}\)
\( = \frac{{ - 1}}{2} + \frac{{ - y\left( {x + y} \right)}}{{2y\left( {y + x} \right)}} + \frac{{ - x\left( {x + y} \right)}}{{2x\left( {x + y} \right)}}\)
\( = \frac{{ - 1}}{2} + \frac{{ - 1}}{2} + \frac{{ - 1}}{2}\)\( = \frac{{ - 3}}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện xác định của biểu thức P là x ≠ 0 và x ≠ – 2.
\(P = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2}}{{x + 2}} - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2 - {x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\frac{{ - {x^2} + x + 2}}{{x + 2}} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{\left( {x + 2} \right)\left( { - {x^2} + x + 2} \right)}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} + {x^2} + 2x - 2{x^2} + 2x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} - {x^2} + 4x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{ - {x^3} - {x^2} + 4x + 4 - {x^2} - 6x - 4}}{x}\)
\( = \frac{{ - {x^3} - 2{x^2} - 2x}}{x}\)
\( = - {x^2} - 2x - 2\).
Lời giải
Với a ≠ 0, y ≠ x, y ≠ –x, ta có:
\(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\)\( = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)a\left( {y - x} \right)}}\)
\( = \frac{{ - \left( {x - y} \right)\left( {x + y} \right)}}{{a\left( {x + y} \right)\left( {x - y} \right)}}\)\( = \frac{{ - 1}}{a}\).
Do đó, giá trị của P không phụ thuộc vào x, y mà chỉ phụ thuộc vào a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận