Câu hỏi:

13/07/2024 333

Một bể chứa nước có hai vòi thoát. Biết rằng khi bể chứa đầy nước thì thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ nhất là x (giờ) và thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ hai là y (giờ).

Tính thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) nếu mở cả hai vòi, biết rằng khi chỉ mở một vòi, vòi thứ nhất xả hết nước trong 2 giờ, vòi thứ hai xả hết nước trong 3 giờ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với x = 2, y = 3 thì \(t = \frac{{2.3}}{{2 + 3}} = 1,2\) giờ = 1 giờ 12 phút.

Do đó, trong trường hợp khi mở một vòi, vòi thứ nhất xả hết nước trong 2 giờ, vòi thứ hai xả hết nước trong 3 giờ, khi mở cả hai vòi sẽ xả được hết nước trong bể sau 1 giờ 12 phút.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện xác định của biểu thức P là x ≠ 0 và x ≠ – 2.

\(P = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2}}{{x + 2}} - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\left( {\frac{{x + 2 - {x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x}.\frac{{ - {x^2} + x + 2}}{{x + 2}} - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{\left( {x + 2} \right)\left( { - {x^2} + x + 2} \right)}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{ - {x^3} + {x^2} + 2x - 2{x^2} + 2x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{ - {x^3} - {x^2} + 4x + 4}}{x} - \frac{{{x^2} + 6x + 4}}{x}\)

\( = \frac{{ - {x^3} - {x^2} + 4x + 4 - {x^2} - 6x - 4}}{x}\)

\( = \frac{{ - {x^3} - 2{x^2} - 2x}}{x}\)

\( = - {x^2} - 2x - 2\).

Lời giải

Với a ≠ 0, y ≠ x, y ≠ –x, ta có:

\(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\)\( = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)a\left( {y - x} \right)}}\)

\( = \frac{{ - \left( {x - y} \right)\left( {x + y} \right)}}{{a\left( {x + y} \right)\left( {x - y} \right)}}\)\( = \frac{{ - 1}}{a}\).

Do đó, giá trị của P không phụ thuộc vào x, y mà chỉ phụ thuộc vào a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay