Câu hỏi:

13/07/2024 266

Cho tam giác nhọn ABC, kẻ trung tuyển AM (M BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:

CE = 4EI.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh CE = 4EI (ảnh 1)

Xét ∆BCE, ta có MB = MC và EF = FB, nên MF là đường trung bình của ∆BCE.

Suy ra CE = 2MF  (1)

Tương tự, có EI là là đường trung bình của ∆AMF, suy ra MF = 2EI   (2)

Từ (1) và (2) suy ra CE = 4EI.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC.

Gọi E là trung điểm của BC và I là giao điểm của AE với MN. Chứng minh I là trung điểm của MN.

Xem đáp án » 13/07/2024 2,687

Câu 2:

Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC.

Chứng minh tứ giác BMNC là hình thang.

Xem đáp án » 13/07/2024 2,112

Câu 3:

Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.

Chứng minh tứ giác AMNB là hình thang.

Xem đáp án » 13/07/2024 2,112

Câu 4:

Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh bốn điểm M, N, P, Q thẳng hàng.

Xem đáp án » 13/07/2024 1,390

Câu 5:

Cho tam giác nhọn ABC, kẻ trung tuyển AM (M BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:

AE = \[\frac{1}{3}\]AB;

Xem đáp án » 13/07/2024 1,096

Câu 6:

Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M AC, N AB). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:

MN // DE;

Xem đáp án » 13/07/2024 1,077

Câu 7:

Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.

Gọi I là giao điểm của AN và BM.Trên tia đối của tia NA lấy điểm E sao cho NE = NI. Trên tia đối của tia MB lấy điểm F sao cho ME = MI. Chứng minh EF // AB.

Xem đáp án » 13/07/2024 1,067
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua