Câu hỏi:
13/07/2024 554
Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M ∈ AC, N ∈ AB). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:
ND // ME.
Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M ∈ AC, N ∈ AB). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:
ND // ME.
Quảng cáo
Trả lời:

Xét ∆ABG có NA = NB và DG = DB nên ND là đường trung bình của ∆ABG.
Suy ra ND // AG (3)
Xét ∆ACG có MA = MC và EG = EC nên ME là đường trung bình của ∆ACG.
Suy ra ME // AG (4)
Từ (3) và (4) suy ra ND // ME.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ∆ABE, ta có MA = MB và MI // BE (vì I ∈ MN, E ∈ BC) nên IA = IE.
Do đó MI là đường trung bình của ∆ABE, suy ra MI = \[\frac{{BE}}{2}\].
Tương tự, ta có IN = \[\frac{{EC}}{2}\].
Mặt khác BE = EC, suy ra MI = IN.
Vậy I là trung điểm của MN.
Lời giải

Xét ∆ABC, ta có MA = MC và NB = NC nên MN là đường trung bình của ∆ABC.
Suy ra MN // AB (1)
Tứ giác AMNB có MN // AB nên AMNB là hình thang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.