Câu hỏi:

13/07/2024 673 Lưu

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M OP), IN // PO (N QO). Chứng minh:

OI là đường trưng trực của MN.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chứng minh OI là đường trưng trực của MN (ảnh 1)

Gọi A là giao điểm của IO và MN.

∆OPQ cân tại O có OI là đường trung tuyến, suy ra OI cũng là đường cao của ∆OPQ.

Suy ra OI PQ     (1)

Xét ∆OPQ, ta có MO = MP và NO = NQ nên MN là đường trung bình của ∆OPQ.

Suy ra MN // PQ   (2)

Từ (1) và (2) suy ra MN OI tại A hay MN IA.

IMN cân tại I có IA là đường cao nên IA cũng là đường trung trực của MN.

Do đó, OI là đường trung trực của MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh tứ giác AMNB là hình thang (ảnh 1)

Xét ∆ABC, ta có MA = MC và NB = NC nên MN là đường trung bình của ∆ABC.

Suy ra MN // AB   (1)

Tứ giác AMNB có MN // AB nên AMNB là hình thang.

Lời giải

Gọi E là trung điểm của BC và I là giao điểm của AE với MN. Chứng minh I là  (ảnh 1)

Xét ∆ABE, ta có MA = MB và MI // BE (vì I MN, E BC) nên IA = IE.

Do đó MI là đường trung bình của ∆ABE, suy ra MI = \[\frac{{BE}}{2}\].

Tương tự, ta có IN = \[\frac{{EC}}{2}\].

Mặt khác BE = EC, suy ra MI = IN.

Vậy I là trung điểm của MN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP