Câu hỏi:

24/02/2024 588

Cho bất phương trình log2(x + 4) < 2log4(14 – x) khẳng định nào sau đây sai:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Điều kiện: x + 4 > 0 và 14 – x > 0, tức –4 < x < 14.

Bất phương trình trở thành log2(x + 4) < log2(14 – x).

Vì cơ số 2 > 1 nên x + 4 < 14 – x hay x < 5.

Kết hợp với điều kiện ta được nghiệm của bất phương trình là –4 < x < 5.

Vậy A sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Điều kiện: x – 40 > 0 và 60 – x > 0, tức 40 < x < 60.

Bất phương trình trở thành log[(x – 40)(60 – x)] < 2 hay – x2 +100x – 2400 < 102.

Từ đó ta có – x2 +100x – 2500 < 0.

Vì – x2 +100x – 2500 = – (x – 50)2 < 0 với mọi x.

Kết hợp với điều kiện ta được 19 nghiệm nguyên dương của bất phương trình đã cho là:{41; 42; 43; 44; 45; 46; 47; …..; 59}.

Câu 2

Tập nghiệm S của bất phương trình log3(x1)+log13x+11  là:

Lời giải

Đáp án đúng là: B

Điều kiện: x – 1 > 0 và x + 1 > 0, tức x > 1.

Bất phương trình trở thành log3 (x – 1)2 – log3(x + 1) ≥ 1.

Từ đó log3(x1)2x+11   hay (x1)2x+13

  (x1)23x3x+10

⇔ x25x2x+10

 x5332x5+332(vì x + 1 > 0).

Kết hợp với điều kiện ta được nghiệm của bất phương trình .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Bất phương trình log2x < 5 có nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Bất phương trình log2(x + 8) ≤ log2(– x2 + 6x – 8) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Bất phương trình log5x<log5(29x)  có nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Bất phương trình log4x2x1log4x1  có tập nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay