Câu hỏi:

28/02/2024 10,332

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a, DSAD đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi j là góc phẳng nhị diện [S, BC, A]. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a, DSAD đều và nằm trong mặt phẳng vuông góc với mặt đá (ảnh 1)

Gọi H, K lần lượt là trung điểm của AD, BC.

DSAD đều nên SH ^ AD mà (SAD) ^ (ABCD) SH ^ (ABCD) SH ^ BC.

Lại có HK ^ BC nên BC ^ (SHK) BC ^ SK.

Ta có: SBCABC=BCHKBCSKBCS,BC,A=SKH^=φ  .

DSAD đều cạnh a nên SH=a32và HK = AB = 2a

Xét DSHK vuông tại H, ta có:

tanφ=tanSKH^=SHHK=34.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Góc phẳng nhị diện [S, BC, A] là (ảnh 1)

Vì SA ^ (ABCD) SA ^ BC.

Ta có: BCABBCSABCSABBCSB .

Khi đó: SBCABC=BCSBBCABBCS,BC,A=SBA^.

Lời giải

Đáp án đúng là: A

Cho hình chóp S.ABC có SA ^ (ABC), đáy ABC là tam giác đều cạnh a (ảnh 1)

 

Gọi I là trung điểm BC AI ^ BC (vì ABC là tam giác đều) (1).

Vì SA ^ (ABC) SA ^ BC (2).

Từ (1) và (2) BC ^ (SAI) BC ^ SI.

Khi đó:SBCABC=BCSIBCAIBCS,BC,A=SIA^ .

DABC đều cạnh a nên AI=a32  .

Xét DSAI vuông tại A, ta có: tanSIA^=SAAI=3SIA^=60° .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP