Câu hỏi:
28/02/2024 3,838Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a, DSAD đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi j là góc phẳng nhị diện [S, BC, A]. Khẳng định nào sau đây là đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi H, K lần lượt là trung điểm của AD, BC.
Vì DSAD đều nên SH ^ AD mà (SAD) ^ (ABCD) ⇒ SH ^ (ABCD) ⇒ SH ^ BC.
Lại có HK ^ BC nên BC ^ (SHK) ⇒ BC ^ SK.
Ta có: .
Vì DSAD đều cạnh a nên và HK = AB = 2a
Xét DSHK vuông tại H, ta có:
.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Góc phẳng nhị diện [S, BC, A] là
Câu 2:
Cho hình chóp S.ABC có SA ^ (ABC), đáy ABC là tam giác đều cạnh a và . Tính số đo góc phẳng nhị diện [S, BC, A].
Câu 3:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao hình chóp bằng . Số đo của góc phẳng nhị diện [S, BC, A] bằng
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy và . Khi đó số đo của góc phẳng nhị diện [S, BD, A] là
Câu 5:
Cho hình chóp S.ABC có đáy ABC vuông cân tại B, AB = BC = a, , SA ^ (ABC). Số đo của góc phẳng nhị diện [S, BC, A] là
Câu 6:
Hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính cosin của góc phẳng nhị diện [S, BC, A].
về câu hỏi!