Câu hỏi:

28/02/2024 1,215

Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD=a2  . Tính khoảng cách giữa đường thẳng DC và (SAB).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm (ảnh 1)

Do ABCD là hình vuông tại A, D nên AB // CD CD // (SAB).

Do đó d(DC, (SAB)) = d(D, (SAB)).

Kẻ DH ^ SA tại H.

Vì SD ^ (ABCD) nên SD ^ AB mà AB ^ AD suy ra AB ^ (SAD) AB ^ HD.

Lại có DH ^ SA nên DH ^ (SAB). Do đó d(D, (SAB)) = DH.

Trong tam giác vuông SAD vuông tại D, ta có: 1DH2=1SD2+1AD2=12a2+14a2=34a2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Khi đó khoảng cách giữa đường thẳng AB và mặt phẳng (SCD) bằng (ảnh 1)

Gọi O là tâm hình vuông ABCD.

Vì S.ABCD là hình chóp tứ giác đều nên SO ^ (ABCD) SO ^ CD.

Kẻ OI ^ CD và OH ^ SI.

SO ^ CD và OI ^ CD nên CD ^ (SOI) CD ^ OH.

Lại có OH ^ SI nên OH ^ (SCD).

Do đó d(O, (SCD)) = OH.

Vì OI là đường trung bình DACD nên OI=AD2=a2 .

DSCD đều cạnh a nên SI=a32  .

Xét DSOI vuông tại O, có SO=SI2IO2=34a2a24=a22 ,

1OH2=1SO2+1OI2=2a2+4a2=6a2OH=a66.

 

Vì AB // CD nên AB // (SCD). Do đó d(AB, (SCD)) = d(A, (SCD)).

dA,(SCD)dO,(SCD)=CACO=2dA,(SCD)=2dO,(SCD) .

Do đó dA,(SCD)=a63 .

Lời giải

Đáp án đúng là: A

Cho hình lăng trụ tam giác ABC.A'B'C' có các cạnh bên hợp với đáy những góc bằng 60°, đáy ABC là tam giác đều và A' (ảnh 1)

Vì ∆ABC đều và AA' = A'B = A'C Þ A'.ABC là hình chóp đều.

Gọi A'H là chiều cao của lăng trụ, suy ra H là trọng tâm DABC.

Khi đó AH là hình chiếu của AA' trên mặt phẳng ABC Þ A'AH^=60° .

Vì (ABC) // (A'B'C') nên d((ABC), (A'B'C')) = A'H.

Xét DAA'H vuông tại H, có A'H=AH.tan60°=a333=a  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP