CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) a) Bán kính đáy của lý nước có dạng hình trụ đó là: \(\frac{5}{2} = 2,5{\rm{\;(cm)}}{\rm{.}}\)

Thể tích lượng nước tinh khiết được chứa trong ly bằng thể tích của hình trụ có chiều cao \(10\) cm, và bằng:

\({V_1} = \pi \cdot {\left( {2,5} \right)^2} \cdot 10 = 62,5\pi {\rm{\;(c}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)

b) Thể tích của 5 viên bi bằng thể tích của hình trụ với chiều cao là \[15 - 10 = 5\] (cm).

\[{V_{5\,\,vien\,\,bi}} = \pi \cdot {\left( {2,5} \right)^2} \cdot 5 = 31,25\pi \] (cm³).

Thể tích của mỗi viên bi là: \(\frac{{31,25\pi }}{5} = 6,25\pi \) (cm³).

2)

1) Một ly nước dạng hình trụ có chiều cao là 15 cm, đường kính đáy là 5 cm, lượng nước tinh khiết trong ly cao 10 cm. Ly nước được đặt cố định trên mặt bàn bằng phẳng như hình vẽ dưới đây. (ảnh 2)

a) Cách 1: Ta có \(MN \bot AB\) tại \[O\] nên \(\Delta MOB\) vuông tại \[O\], suy ra ba điểm \[M,{\rm{ }}O,{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].

Ta có \(MH \bot CB\) tại \[H\] nên \(\Delta MHB\) vuông tại \[H,\]suy ra ba điểm \[M,{\rm{ }}H,{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].

Do đó bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].

Cách 2: Gọi \[I\] là trung điểm của \[MB\].

Ta có \(MN \bot AB\) tại \[O\] nên \(\Delta MOB\) vuông tại \[O,\] lại có \[OI\] là đường trung tuyến ứng với cạnh huyền \(MB\) nên \(IO = IM = IB = \frac{1}{2}MB.\)

Ta có \(MH \bot CB\) tại \[H\] nên \(\Delta MHB\) vuông tại \[H,\]

lại có HI là đường trung tuyến với cạnh huyền \(MB\) nên \(IH = IM = IB = \frac{1}{2}MB.\)

Vậy \(IO = IM = IH = IB\) nên bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] cùng thuộc đường tròn tâm \[I,\] đường kính \(MB.\)

b) Chứng minh \(\widehat {MHO} = \widehat {MNA}\)

Xét đường tròn ngoại tiếp đi qua bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] có \(\widehat {MHO} = \widehat {MBO}\) (hai góc nội tiếp cùng chắn cung \[MO).\]

Xét đường tròn tâm \[O\] có: \(\widehat {MBA} = \widehat {MNA}\) (hai góc nội tiếp cùng chắn cung \[MA)\] hay \(\widehat {MBO} = \widehat {MNA}\)

Do đó: \(\widehat {MHO} = \widehat {MNA}.\)

Chứng minh \(ME \cdot MH = BE \cdot HC\)

Xét đường tròn ngoại tiếp đi qua bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] có \(\widehat {BMO} = \widehat {BHO}\) (hai góc nội tiếp cùng chắn cung \[OB)\]

Tam giác \[MBO\] cân tại \[O\] (do \(OM = OB)\) nên \(\widehat {BMO} = \widehat {MBO}\).

Lại có \(\widehat {MHO} = \widehat {MBO}\) (chứng minh trên)

Suy ra \(\widehat {MHO} = \widehat {BHO}\) nên \[HO\] là tia phân giác của \(\widehat {MHB}\) hay \[ME\] là tia phân giác của \(\widehat {MHB}.\)

Xét \(\Delta MHB\) có \[ME\] là tia phân giác của \(\widehat {MHB}\) nên \(\frac{{ME}}{{BE}} = \frac{{MH}}{{BH}}\) (1)

Xét đường tròn \(\left( O \right)\) có \(AB\) là đường kính và \(M \in \left( O \right)\) nên \(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó \(\widehat {CMB} = 90^\circ \) nên \(\widehat {HMC} + \widehat {HMB} = 90^\circ .\)

Mặt khác, \(\Delta MHB\) vuông tại \(H\) nên \(\widehat {HMB} + \widehat {HBM} = 90^\circ \) (tổng hai góc nhọn trong tam giác vuông).

Suy ra \(\widehat {HMC} = \widehat {HBM}.\)

Xét \(\Delta MHC\) và \(\Delta BHM\) có: \(\widehat {HMC} = \widehat {BHM} = 90^\circ \) và \(\widehat {HMC} = \widehat {HBM}\)

Do đó  (g.g), suy ra \(\frac{{MH}}{{BH}} = \frac{{HC}}{{HM}}\) (2)

Từ (1) và (2) suy ra \(\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\,\,\left( { = \frac{{MH}}{{BH}}} \right)\) hay \(ME \cdot MH = BE \cdot HC\).

c) Tam giác \[MHC\] vuông tại \[C\] nên ba điểm \[M,{\rm{ }}H,{\rm{ }}C\] nội tiếp đường tròn đường kính \[MC\].

Mà \[P\] thuộc đường tròn đó nên \(\widehat {MPC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Mặt khác, \[P\] thuộc đường tròn tâm \[O,\] đường kính \[MN\] nên \(\widehat {MPN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Vậy \(\widehat {MPN} + \widehat {MPC} = 90^\circ + 90^\circ = 180^\circ \) nên \[C,{\rm{ }}P,{\rm{ }}N\] thẳng hàng. (3)

Xét \(\Delta MHC\) và \(\Delta BMC\) có:

\(\widehat {MHC} = \widehat {BMC} = 90^\circ \) và \(\widehat {MCB}\) là góc chung

Do đó  (g.g), suy ra \(\frac{{MH}}{{BM}} = \frac{{HC}}{{MC}}\) hay \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\).

Tam giác \[BMN\]có \[BO\] là đường cao đồng thời là đường trung tuyến nên \[\Delta BMN\] cân tại \[B\], suy ra \(BM = BN.\)

Do đó từ \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\) ta có \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BN}}\)

Theo câu b ta có: \(\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\) nên \(\frac{{ME}}{{BE}} = \frac{{MC}}{{BN}}\).

Xét đường tròn \(\left( O \right)\) đường kính \(MN\) có \(B \in \left( O \right)\) nên \(\widehat {NBM} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\widehat {NBE} = 90^\circ .\)

Xét \(\Delta MCE\) và \(\Delta BNE\) có: \(\widehat {CME} = \widehat {NBE} = 90^\circ \) và \(\frac{{ME}}{{BE}} = \frac{{MC}}{{BN}}\)

Do đó  (g.g), suy ra \(\widehat {MEC} = \widehat {BEN}\) (hai góc tương ứng).

Ta có: \(\widehat {BEN} + \widehat {CEB} = \widehat {MEC} + \widehat {CEB} = \widehat {MEB} = 180^\circ \) nên ba điểm \[C,{\rm{ }}E,{\rm{ }}N\] thẳng hàng. (4)

Từ (3) và (4) ta có bốn điểm \[C;{\rm{ }}P;{\rm{ }}E;{\rm{ }}N\] thẳng hàng hay \[C;{\rm{ }}P;{\rm{ }}E\] thẳng hàng.

Lời giải

1) Cách 1: Giải bài toán bằng cách lập phương trình

Gọi số tiền ở khoản đầu tư thứ nhất của Bác Tiến là \(x\) (triệu đồng) \(\left( {0 \le x \le 400} \right).\)

Số tiền ở khoản đầu tư thứ hai là: \(400 - x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% \left( {400 - x} \right) = 32 - 0,08x\) (triệu đồng).

Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:

\(0,06x + 32 - 0,08x = 27\).

Giải phương trình:

\(0,06x + 32 - 0,08x = 27\)

\( - 0,02x = 27 - 32\)

\( - 0,02x = - 5\)

\(x = 250\) (thoả mãn điều kiện).

Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là \(400 - 250 = 150\) (triệu đồng).

Cách 2: Giải bài toán bằng cách lập hệ phương trình

Gọi số tiền ở khoản đầu tư thứ nhất và thứ hai của Bác Tiến lần lượt là \(x\) và \(y\) (triệu đồng) \(\left( {0 \le x \le 400,\,\,0 \le y \le 400} \right).\)

Theo bài, tổng số tiền đầu tư của bác Tiến là 400 triệu đồng nên ta có phương trình:

\(x + y = 400\) (1)

Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% y = 0,08y\) (triệu đồng).

Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:

\(0,06x + 0,08y = 27\) (2)

Từ phương trình (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 400\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\0,06x + 0,08y = 27\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (1) ta có: \(y = 400 - x\) (3)

Thế vào phương trình (2) ta được: \(0,06x + 0,08\left( {400 - x} \right) = 27.\) (4)

Giải phương trình (4):

\(0,06x + 0,08\left( {400 - x} \right) = 27\)

\(0,06x + 32 - 0,08x = 27\)

\( - 0,02x = 27 - 32\)

\( - 0,02x = - 5\)

\(x = 250\) (thoả mãn điều kiện).

Thay giá trị \(x = 250\) vào phương trình (3) ta được: \(y = 400 - 250 = 150\)(thoả mãn điều kiện).

Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là 150 triệu đồng.

2) Giả sử theo kế hoạch mỗi ngày tổ sản xuất phải làm \(x\) (sản phẩm) \(\left( {x \in \mathbb{N}*,{\mkern 1mu} {\mkern 1mu} x < 300} \right).\)

Khi đó, theo kế hoạch thời gian cần thiết để làm xong 300 sản phẩm là: \(\frac{{300}}{x}\) (ngày).

Thực tế mỗi ngày số sản phẩm mà tổ làm được là: \(x + 10\) (sản phẩm).

Khi đó, thời gian thực tế mà tổ sản xuất làm xong 300 sản phẩm là: \(\frac{{300}}{{x + 10}}\) (ngày).

Do tổ đã hoàn thành công việc sớm hơn 1 ngày nên ta có phương trình:

\(\frac{{300}}{x} - \frac{{300}}{{x + 10}} = 1\) (1)

Giải phương trình (1):

\(\frac{{300}}{x} - \frac{{300}}{{x + 10}} = 1\)

\(\frac{1}{x} - \frac{1}{{x + 10}} = \frac{1}{{300}}\)

\(\frac{{x + 10 - x}}{{x\left( {x + 10} \right)}} = \frac{1}{{300}}\)

\(\frac{{10}}{{{x^2} + 10x}} = \frac{1}{{300}}\)

\({x^2} + 10x = 3\,\,000\)

\({x^2} - 50x + 60x - 3\,\,000 = 0\)

\(x\left( {x - 50} \right) + 60\left( {x - 50} \right) = 0\)

\(\left( {x - 50} \right)\left( {x + 60} \right) = 0\)

\(x - 50 = 0\) hoặc \(x + 60 = 0\)

\(x = 50\) (thoả mãn) \(x = - 60\) (không thoả mãn).

Vậy theo kế hoạch mỗi ngày tổ sản xuất cần sản xuất 50 sản phẩm.

3) Để phương trình \({x^2} - 3x + a = 0\) nhận \(x = \frac{{3 - \sqrt 5 }}{2}\) làm một nghiệm thì \(x = \frac{{3 - \sqrt 5 }}{2}\) phải thỏa mãn phương trình đó.

Thay \(x = \frac{{3 - \sqrt 5 }}{2}\) vào phương trình \({x^2} - 3x + a = 0\), ta được:

\({\left( {\frac{{3 - \sqrt 5 }}{2}} \right)^2} - 3 \cdot \left( {\frac{{3 - \sqrt 5 }}{2}} \right) + a = 0\)

\(\frac{{9 - 6\sqrt 5 + 5}}{4} - \frac{{9 - 3\sqrt 5 }}{2} + a = 0\)

\(\frac{{9 - 6\sqrt 5 + 5 - 18 + 6\sqrt 5 }}{4} + a = 0\)

\(\frac{{ - 4}}{4} + a = 0\)

\( - 1 + a = 0\)

\(a = 1\).

Với \(a = 1\), phương trình bậc hai trở thành: \({x^2} - 3x + 1 = 0\) (1)

Do phương trình (1) có hai nghiệm nên theo hệ thức Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 3\\{x_1}{x_2} = 1.\end{array} \right.\)

Ta có \(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {3^2} - 2 \cdot 1 = 7.\)

Vậy \(a = 1\) và tổng bình phương hai nghiệm của phương trình đã cho khi ấy bằng 7.