Câu hỏi:
13/07/2024 9,342Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy, ngọn cây tạo thành một tam giác vuông. Đoạn cây gãy tạo với mặt đất góc 20° và chắn ngang lối đi một đoạn 5 m (H.4.36). Hỏi trước khi bị gãy, cây cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử hình ảnh cây bị gãy mô tả bởi hình vẽ như dưới đây
Xét ∆ABC vuông tại A, ta có:
⦁ AC = AB.tan20° = 5.tan20° ≈ 1,8 (m);
⦁ suy ra
Khi đó: AC + CB ≈ 1,8 + 5,3 = 7,1 (m).
Vậy trước khi bị gãy, cây cao khoảng 7,1 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét các tam giác vuông có một góc nhọn bằng hai lần góc nhọn còn lại. Hỏi các tam giác đó có đồng dạng với nhau không? Tính sin và côsin của góc nhọn lớn hơn.
Câu 2:
Hình 4.35 là mô hình của một túp lều. Tìm góc α giữa cạnh mái lều và mặt đất (làm tròn kết quả đến phút).
Câu 3:
Với mọi góc nhọn α, ta có
A. sin(90° – α) = cosα.
B. tan(90° – α) = cosα.
C. cot(90° – α) = 1 – tanα.
D. cot(90° – α) = sinα.
Câu 5:
Cho tam giác ABC vuông tại A, có (H.4.37).
a) Hãy viết các tỉ số lượng giác sinα, cosα.
Câu 6:
b) Sử dụng định lí Pythagore, chứng minh rằng sin2α + cos2α = 1.
về câu hỏi!