Câu hỏi:

13/07/2024 528 Lưu

Hình 12 mô tả đường lên dốc ở Hình 11, trong đó góc giữa BC và phương nằm giữa BA là ABC^=15°.

Hình 12 mô tả đường lên dốc ở Hình 11, trong đó góc giữa BC và phương nằm (ảnh 1)

Cạnh góc vuông AC và cạnh huyền BC (Hình 12) có liên hệ với nhau như thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ∆ABC vuông tại A, ta có: sinB=ACBC, do đó AC = BC.sinB = BC.sin15°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AH = 6 cm, góc B= 40 độ , góc C = 35 độ (ảnh 1)

Xét ∆ABH vuông tại H, ta có:

sinB=AHAB, suy ra AB=AHsin40°=6sin40°9,3 (cm).

BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).

Xét ∆ACH vuông tại H, ta có:

sinC=AHAC, suy ra AC=AHsin35°=6sin35°10,5 (cm). 

CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).

Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).

Lời giải

Vì AH BC và BD BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là: BD=ADcotABD^=68cot28°127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH=AH.tanCAH^127,9tan43°119,3 (m).

Chiều cao BC của tháp truyền hình là:  BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP