Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108 cm2 như Hình 1.17. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.
Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108 cm2 như Hình 1.17. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.

Quảng cáo
Trả lời:


Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (cm) là độ dài cạnh của các hình vuông nhỏ được cắt ở bốn góc của tấm bìa.
Điều kiện 0 < x < 30.
Khi cắt bỏ bốn hình vuông nhỏ có cạnh x (cm) ở bốn góc và gập lên thì ta được một chiếc hộp chữ nhật không có nắp, có đáy là hình vuông với độ dài cạnh bằng (60 – 2x) (cm) và chiều cao bằng x (cm).
Thể tích của chiếc hộp này là: V(x) = (60 – 2x)2.x = 4x3 – 240x2 + 3600x (cm3).
Ta có V'(x) = 12x2 – 480x + 3600;
V'(x) = 0 Û 12x2 – 480x + 3600 = 0 Û x = 10 (thỏa mãn) hoặc x = 30 (loại).
Lập bảng biến thiên

Vậy để thể tích của chiếc hộp lớn nhất thì độ dài cạnh của các hình vuông nhỏ phải cắt là 10 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.