Câu hỏi:
12/07/2024 31,459Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình
s(t) = – t3 + 6t2 + t + 5,
trong đó t tính bằng giây và s tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét phương trình chuyển động của chất điểm s(t) = – t3 + 6t2 + t + 5 với t ∈ [0; 5].
Vận tốc tức thời của chất điểm là v(t) = s'(t) = – 3t2 + 12t + 1 với t ∈ [0; 5].
Ta có v'(t) = – 6t + 12. Khi đó, trên khoảng (0; 5), v'(t) = 0 khi t = 2.
v(0) = 1, v(2) = 13, v(5) = – 14.
Do đó, tại t = 2.
Vậy chất điểm có vận tốc tức thời lớn nhất bằng 13 m/s tại thời điểm t = 2 giây trong 5 giây đầu tiên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta bơm xăng vào bình của một xe ô tô. Biết rằng thể tích V (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng t (phút) được cho bởi công thức
V(t) = 300(t2 – t3) + 4 với 0 ≤ t ≤ 0,5.
(Nguồn: R.I Charles et al., Algebra 2, Pearson)
a) Ban đầu trong bình xăng có bao nhiêu lít xăng?
b) Sau khi bơm 30 giây thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít?
c) Khi xăng chảy vào bình xăng, gọi V'(t) là tốc độ tăng thể tích tại thời điểm t với 0 ≤ t ≤ 0,5. Xăng chảy vào bình xăng ở thời điểm nào có tốc độ tăng thể tích là lớn nhất.
Câu 2:
Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi ho được cho bởi công thức
V = k(R – r)r2 với 0 ≤ r < R,
trong đó k là hằng số, R là bán kính bình thường của khí quản, r là bán kính khí quản khi ho (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất?
Câu 3:
Cho một tấm nhôm có dạng hình vuông cạnh 6 dm. Bác Ánh cắt ở bốn góc bốn hình vuông có cùng độ dài cạnh bằng x (dm), rồi gập tấm nhôm lại như Hình 7 để được một cái hộp có dạng hình hộp chữ nhật không có nắp. Gọi V là thể tích của khối hộp đó.
V được tính theo x bởi công thức nào? Có thể tìm giá trị lớn nhất của V bằng cách nào?
Câu 4:
Nếu hàm số y = f(x) có đạo hàm trên ℝ thỏa mãn f'(x) = sin x – 2 023, ∀ x ∈ ℝ thì giá trị lớn nhất của hàm số y = f(x) trên đoạn [1; 2] bằng
A. f(0).
B. f(1).
C. f(1,5).
D. f(2).
Câu 5:
Câu 6:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:
c) f(x) = ex(x2 – 5x + 7) trên đoạn [0; 3];
về câu hỏi!