Giải SGK Toán 12 Cánh diều Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án
127 người thi tuần này 4.6 1.6 K lượt thi 22 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta thấy độ dài x (dm) của cạnh hình vuông bị cắt phải thỏa mãn điều kiện 0 < x < 3.
Từ giả thiết suy ra kích thước của khối hộp chữ nhật là x, 6 – 2x, 6 – 2x (dm).
Thể tích của khối hộp là V(x) = x(6 – 2x)2 (dm2) với 0 < x < 3.
Ta phải tìm x0 ∈ (0; 3) sao cho V(x0) có giá trị lớn nhất.
Ta có V'(x) = (6 – 2x)2 – 4x(6 – 2x) = (6 – 2x)(6 – 6x) = 12(3 – x)(1 – x).
Trên khoảng (0; 3), V'(x) = 0 khi x = 1.
Bảng biến thiên của hàm số V'(x) như sau:

Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; 3), hàm số V(x) đạt giá trị lớn nhất bằng 16 tại x = 1.
Vậy để khối hộp tạo thành có thể tích lớn nhất thì x = 1 (dm).
Lời giải
Quan sát đồ thị Hình 8, ta thấy:
a) Điểm B(1; 3) thuộc đồ thị hàm số có tung độ lớn nhất.
b) Điểm C(0; – 1) thuộc đồ thị hàm số có tung độ nhỏ nhất.
Lời giải
Do 0 ≤ x2 ≤ 9 với mọi x ∈ [– 3; 3] nên – 9 ≤ – x2 ≤ 0 với mọi x ∈ [– 3; 3], khi đó ta suy ra 0 ≤ 9 – x2 ≤ 9 với mọi x ∈ [– 3; 3], do đó với mọi x ∈ [– 3; 3], tức là 0 ≤ f(x) ≤ 3 với mọi x ∈ [– 3; 3].
Ta có f(0) = 3 nên ; f(3) = f(– 3) = 0 nên .
Lời giải
Ta có .
a) Ta có , , x – 1 > 0 khi x → 1+.
Do đó, .
Ta có .Lời giải
b) Ta có với x > 1.
f'(x) = 0 ⇔ (x – 1)2 = 1 ⇔ x = 2 (t/m) hoặc x = 0 (loại).
Bảng biến thiên của hàm số f(x) trên khoảng (1; + ∞) như sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.