Câu hỏi:
13/07/2024 5,595
Cho đường tròn tâm O và hai điểm A, B thuộc (O). Gọi d là đường trung trực của đoạn AB. Chứng minh rằng d là một trục đối xứng của (O).
Cho đường tròn tâm O và hai điểm A, B thuộc (O). Gọi d là đường trung trực của đoạn AB. Chứng minh rằng d là một trục đối xứng của (O).
Quảng cáo
Trả lời:

Vì hai điểm A, B thuộc (O) nên OA = OB.
Mà d là đường trung trực của đoạn AB nên nên O thuộc d.
Hay đường thẳng d đi qua tâm O của đường tròn.
Vậy d là một trục đối xứng của (O).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là trung điểm của BC.
Ta có AO là trung tuyến ứng với cạnh huyền nên
Suy ra A, B, C cùng thuộc đường tròn bán kính OA.
Tâm O là trung điểm của BC nên BC là đường kính.
Do đó, các điểm A, B, C thuộc cùng một đường tròn.
Xét tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có:
BC2 = AB2 + AC2 = 32 + 42 = 25.
Suy ra BC = 5 cm.
Khi đó
Vậy các điểm A, B, C thuộc cùng một đường tròn và có bán kính là 2,5 cm.
Lời giải

Ta có: nên điểm M nằm trong đường tròn .
nên điểm N nằm ngoài đường tròn .
Mặt khác, OP2 = 22 + 12 = 5 (theo định lí Pythagore).
Suy ra nên điểm P nằm trên đường tròn .
Vậy trong các điểm đã cho, điểm P nằm trên, điểm M nằm trong, điểm N nằm ngoài đường tròn .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.